Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
J Mol Biol. 2024 Jun 15;436(12):168603. doi: 10.1016/j.jmb.2024.168603. Epub 2024 May 8.
OXA-66 is a member of the OXA-51 subfamily of class D β-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and β5-β6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.
OXA-66 是一种天然存在于不动杆菌属的 D 类β-内酰胺酶 OXA-51 亚家族的成员,包括鲍曼不动杆菌,这是 ESKAPE 病原体之一,也是导致耐药性医院感染的主要原因之一。虽然野生型 OXA-66 和 OXA-51 的催化活性都较低,但它们在不动杆菌属的基因组中普遍存在。OXA-51 也具有显著的热稳定性。此外,新出现的单氨基酸和双氨基酸变异体对碳青霉烯类药物的活性增加,表明 OXA-51 亚家族正在不断发展并获得临床意义。在这项研究中,我们使用分子动力学模拟、X 射线晶体学和热变性数据来检查和比较 OXA-66 wt 及其功能获得变体的动力学:I129L(OXA-83)、L167V(OXA-82)、P130Q(OXA-109)、P130A 和 W222L(OXA-234)。我们的数据表明,OXA-66 wt 也具有较高的熔点,其显著的稳定性是由于活性位点周围的许多残基和三个环(P、Ω 和β5-β6)形成了广泛而刚性的疏水性桥。与 WT 酶相比,突变体仅在环区表现出更高的灵活性,并且比其他坚固的碳青霉烯酶(如 OXA-23 和 OXA-24/40)更稳定。所有突变体都显示出 I129 和 W222 残基的旋转灵活性增加,这使得碳青霉烯类药物能够结合。总体而言,我们的数据支持这样一种假设,即 OXA-51 和 OXA-66 中的结构特征促进了多种高度稳定的变体的进化,这些变体在鲍曼不动杆菌中具有更高的临床相关性。