Department of Microbiology-Immunology, Northwestern Universitygrid.16753.36, Feinberg School of Medicine, Chicago, Illinois, USA.
Center for Structural Genomics of Infectious Diseases, Northwestern Universitygrid.16753.36, Feinberg School of Medicine, Chicago, Illinois, USA.
Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0098522. doi: 10.1128/aac.00985-22. Epub 2022 Sep 21.
Resistance to antipseudomonal penicillins and cephalosporins is often driven by the overproduction of the intrinsic β-lactamase AmpC. However, OXA-10-family β-lactamases are a rich source of resistance in Pseudomonas aeruginosa. OXA β-lactamases have a propensity for mutation that leads to extended spectrum cephalosporinase and carbapenemase activity. In this study, we identified isolates from a subclade of the multidrug-resistant (MDR) high risk P. aeruginosa clonal complex CC446 with a resistance to ceftazidime. A genomic analysis revealed that these isolates harbored a plasmid containing a novel allele of , named , which was predicted to produce an OXA-10 variant with two amino acid substitutions: an aspartic acid instead of a glycine at position 157 and a serine instead of a phenylalanine at position 153. The G157D mutation, present in OXA-14, is associated with the resistance of P. aeruginosa to ceftazidime. Compared to OXA-14, OXA-935 showed increased catalytic efficiency for ceftazidime. The deletion of restored the sensitivity to ceftazidime, and susceptibility profiling of P. aeruginosa laboratory strains expressing revealed that OXA-935 conferred ceftazidime resistance. To better understand the impacts of the variant amino acids, we determined the crystal structures of OXA-14 and OXA-935. Compared to OXA-14, the F153S mutation in OXA-935 conferred increased flexibility in the omega (Ω) loop. Amino acid changes that confer extended spectrum cephalosporinase activity to OXA-10-family β-lactamases are concerning, given the rising reliance on novel β-lactam/β-lactamase inhibitor combinations, such as ceftolozane-tazobactam and ceftazidime-avibactam, to treat MDR P. aeruginosa infections.
对耐假单胞菌青霉素和头孢菌素的耐药性通常是由固有β-内酰胺酶 AmpC 的过度产生驱动的。然而,OXA-10 家族β-内酰胺酶是铜绿假单胞菌耐药性的丰富来源。OXA β-内酰胺酶具有突变倾向,导致扩展谱头孢菌素酶和碳青霉烯酶活性。在这项研究中,我们从多药耐药(MDR)高危铜绿假单胞菌克隆复合体 CC446 的一个亚分支中鉴定出对头孢他啶耐药的分离株。基因组分析显示,这些分离株携带一种质粒,其中包含一个新的 等位基因,命名为 ,该基因预测会产生一种 OXA-10 变体,其中有两个氨基酸取代:第 157 位的天冬氨酸取代甘氨酸,第 153 位的丝氨酸取代苯丙氨酸。在 OXA-14 中存在的 G157D 突变与铜绿假单胞菌对头孢他啶的耐药性有关。与 OXA-14 相比,OXA-935 对头孢他啶的催化效率更高。缺失 恢复了对头孢他啶的敏感性,而表达 的铜绿假单胞菌实验室菌株的药敏谱分析表明,OXA-935 赋予了头孢他啶耐药性。为了更好地理解变异氨基酸的影响,我们测定了 OXA-14 和 OXA-935 的晶体结构。与 OXA-14 相比,OXA-935 中的 F153S 突变使 ω(Ω)环的灵活性增加。将 OXA-10 家族β-内酰胺酶的扩展谱头孢菌素酶活性赋予氨基酸变化令人担忧,因为人们越来越依赖新型β-内酰胺/β-内酰胺酶抑制剂组合,如头孢洛扎他啶-他唑巴坦和头孢他啶-阿维巴坦,来治疗 MDR 铜绿假单胞菌感染。