Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA.
Int J Biol Macromol. 2024 Jun;270(Pt 2):132252. doi: 10.1016/j.ijbiomac.2024.132252. Epub 2024 May 9.
In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.
在这项研究中,我们使用橄榄叶提取物合成了锌(ZnNPs)、铜(CuNPs)和银(AgNPs)纳米粒子,并将它们掺入壳聚糖聚合物中,从而开发出一种新型纳米复合材料。这种方法结合了壳聚糖的生物相容性和金属纳米粒子的抗菌和抗癌特性,同时增强了橄榄叶提取物的植物化学物质丰富度。我们研究的意义在于,它为传统抗生素和癌症治疗提供了一种可生物降解和稳定的替代方案,特别是在对抗多药耐药菌和各种癌症类型方面。通过傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)、能谱(EDX)和透射电子显微镜(TEM)的综合表征,证实了纳米复合材料的成功合成,平均尺寸约为 22.6nm。植物化学分析突出了橄榄叶提取物和纳米粒子本身的抗氧化丰富成分。在功能上,合成的纳米粒子对多药耐药菌表现出强大的抗菌活性,通过抑制关键耐药基因(ermC、tetX3-q、blaZ 和 Ery-msrA),优于传统抗生素。在抗癌评估中,纳米粒子表现出浓度依赖性的选择性细胞毒性,CuNPs 和 AgNPs 表现出特别强的抗癌作用,同时对正常细胞表现出最小的毒性。ZnNPs 的细胞毒性较低,突出了这些纳米粒子的安全性。此外,纳米粒子诱导癌细胞凋亡,这表现在癌基因(P21、P53 和 BCL2)的调节上,表明它们具有治疗潜力。我们的研究结果强调了这些生物源纳米粒子在开发更安全、更有效的抗菌和抗癌疗法中的多种应用。