Silva-Holguín Pamela Nair, Garibay-Alvarado Jesús Alberto, Reyes-López Simón Yobanny
Laboratorio de Materiales Híbridos Nanoestructurados, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32300, Mexico.
Materials (Basel). 2024 Apr 23;17(9):1939. doi: 10.3390/ma17091939.
Water pollution is a worldwide environmental and health problem that requires the development of sustainable, efficient, and accessible technologies. Nanotechnology is a very attractive alternative in environmental remediation processes due to the multiple properties that are conferred on a material when it is at the nanometric scale. This present review focuses on the understanding of the structure-physicochemical properties-performance relationships of silver nanoparticles, with the objective of guiding the selection of physicochemical properties that promote greater performance and are key factors in their use as antibacterial agents, surface modifiers, colorimetric sensors, signal amplifiers, and plasmonic photocatalysts. Silver nanoparticles with a size of less than 10 nm, morphology with a high percentage of reactive facets {111}, and positive surface charge improve the interaction of the nanoparticles with bacterial cells and induce a greater antibacterial effect. Adsorbent materials functionalized with an optimal concentration of silver nanoparticles increase their contact area and enhance adsorbent capacity. The use of stabilizing agents in silver nanoparticles promotes selective adsorption of contaminants by modifying the surface charge and type of active sites in an adsorbent material, in addition to inducing selective complexation and providing stability in their use as colorimetric sensors. Silver nanoparticles with complex morphologies allow the formation of hot spots or chemical or electromagnetic bonds between substrate and analyte, promoting a greater amplification factor. Controlled doping with nanoparticles in photocatalytic materials produces improvements in their electronic structural properties, promotes changes in charge transfer and bandgap, and improves and expands their photocatalytic properties. Silver nanoparticles have potential use as a tool in water remediation, where by selecting appropriate physicochemical properties for each application, their performance and efficiency are improved.
水污染是一个全球性的环境与健康问题,需要开发可持续、高效且易于使用的技术。由于纳米材料在纳米尺度下具有多种特性,纳米技术在环境修复过程中是一种非常有吸引力的选择。本综述着重于理解银纳米颗粒的结构-物理化学性质-性能之间的关系,目的是指导选择那些能促进更好性能的物理化学性质,这些性质是其用作抗菌剂、表面改性剂、比色传感器、信号放大器和等离子体光催化剂的关键因素。尺寸小于10 nm、具有高比例{111}反应面的形态以及正表面电荷的银纳米颗粒,能改善纳米颗粒与细菌细胞的相互作用,并产生更强的抗菌效果。用最佳浓度的银纳米颗粒功能化的吸附材料会增加其接触面积并提高吸附能力。在银纳米颗粒中使用稳定剂,除了能诱导选择性络合并在用作比色传感器时提供稳定性外,还能通过改变吸附材料的表面电荷和活性位点类型来促进对污染物的选择性吸附。具有复杂形态的银纳米颗粒能在底物和分析物之间形成热点或化学或电磁键,从而促进更大的放大倍数。在光催化材料中用纳米颗粒进行可控掺杂能改善其电子结构性质,促进电荷转移和带隙的变化,并改善和扩展其光催化性质。银纳米颗粒有潜力作为水修复的工具,通过为每种应用选择合适的物理化学性质来提高其性能和效率。