Suppr超能文献

一种用于猪行为识别的集成采集与分发机制及注意力增强可变形卷积模型。

An Integrated Gather-and-Distribute Mechanism and Attention-Enhanced Deformable Convolution Model for Pig Behavior Recognition.

作者信息

Mao Rui, Shen Dongzhen, Wang Ruiqi, Cui Yiming, Hu Yufan, Li Mei, Wang Meili

机构信息

College of Information Engineering, Northwest A&F University, Yangling 712100, China.

Shaanxi Engineering Research Center of Agriculture Information Intelligent Perception and Analysis, Yangling 712100, China.

出版信息

Animals (Basel). 2024 Apr 27;14(9):1316. doi: 10.3390/ani14091316.

Abstract

The behavior of pigs is intricately tied to their health status, highlighting the critical importance of accurately recognizing pig behavior, particularly abnormal behavior, for effective health monitoring and management. This study addresses the challenge of accommodating frequent non-rigid deformations in pig behavior using deformable convolutional networks (DCN) to extract more comprehensive features by incorporating offsets during training. To overcome the inherent limitations of traditional DCN offset weight calculations, the study introduces the multi-path coordinate attention (MPCA) mechanism to enhance the optimization of the DCN offset weight calculation within the designed DCN-MPCA module, further integrated into the cross-scale cross-feature (C2f) module of the backbone network. This optimized C2f-DM module significantly enhances feature extraction capabilities. Additionally, a gather-and-distribute (GD) mechanism is employed in the neck to improve non-adjacent layer feature fusion in the YOLOv8 network. Consequently, the novel DM-GD-YOLO model proposed in this study is evaluated on a self-built dataset comprising 11,999 images obtained from an online monitoring platform focusing on pigs aged between 70 and 150 days. The results show that DM-GD-YOLO can simultaneously recognize four common behaviors and three abnormal behaviors, achieving a precision of 88.2%, recall of 92.2%, and mean average precision (mAP) of 95.3% with 6.0MB Parameters and 10.0G FLOPs. Overall, the model outperforms popular models such as Faster R-CNN, EfficientDet, YOLOv7, and YOLOv8 in monitoring pens with about 30 pigs, providing technical support for the intelligent management and welfare-focused breeding of pigs while advancing the transformation and modernization of the pig industry.

摘要

猪的行为与它们的健康状况密切相关,这凸显了准确识别猪的行为,尤其是异常行为,对于有效的健康监测和管理的至关重要性。本研究应对了使用可变形卷积网络(DCN)来适应猪行为中频繁的非刚性变形这一挑战,通过在训练期间纳入偏移量来提取更全面的特征。为了克服传统DCN偏移权重计算的固有局限性,该研究引入了多路径坐标注意力(MPCA)机制,以增强在设计的DCN-MPCA模块内DCN偏移权重计算的优化,该模块进一步集成到骨干网络的跨尺度跨特征(C2f)模块中。这种优化后的C2f-DM模块显著增强了特征提取能力。此外,在颈部采用了聚集-分布(GD)机制,以改善YOLOv8网络中的非相邻层特征融合。因此,本研究中提出的新型DM-GD-YOLO模型在一个自建数据集上进行了评估,该数据集包含从一个专注于70至150日龄猪的在线监测平台获得的11999张图像。结果表明,DM-GD-YOLO能够同时识别四种常见行为和三种异常行为,在参数为6.0MB和10.0G FLOP的情况下,精度达到88.2%,召回率达到92.2%,平均精度均值(mAP)达到95.3%。总体而言,在监测约30头猪的猪圈时,该模型优于诸如Faster R-CNN、EfficientDet、YOLOv7和YOLOv8等流行模型,为猪的智能管理和以福利为重点的养殖提供了技术支持,同时推动了养猪业的转型和现代化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0d/11083036/152a379ce68c/animals-14-01316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验