Gaizauskaite Zydrune, Zvirdauskiene Renata, Svazas Mantas, Basinskiene Loreta, Zadeike Daiva
Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania.
Food Institute, Kaunas University of Technology, 50254 Kaunas, Lithuania.
Polymers (Basel). 2024 Apr 23;16(9):1178. doi: 10.3390/polym16091178.
The degradation of the complex structure of lignocellulosic biomass is important for its further biorefinery to value-added bioproducts. The use of effective fungal species for the optimised degradation of biomass can promote the effectiveness of the biorefinery of such raw material. In this study, the optimisation of processing parameters (temperature, time, and ratio) for cellulase activity and reducing sugar (RS) production through the hydrolysis of sugar beet pulp (SBP) by edible filamentous fungi of , , , , , and spp. was performed. The production of RS was analysed at various solid/water () ratios (1:10-1:20), different incubation temperatures (20-35 °C), and processing times (60-168 h). The CCF 3264 and CCF 3438 strains showed the most effective carboxymethyl cellulose (CMC) degrading activity and also sugar recovery (15.9-44.8%) from SBP biomass in the one-factor experiments. Mathematical data evaluation indicated that the highest RS concentration (39.15 g/100 g d.w.) and cellulolytic activity (6.67 U/g d.w.) could be achieved using CCF 3264 for the degradation of SBP at 26 °C temperature with 136 h of processing time and a 1:15 solid/water ratio. This study demonstrates the potential of fungal degradation to be used for SBP biorefining.
木质纤维素生物质复杂结构的降解对于其进一步生物精炼为增值生物产品至关重要。使用有效的真菌物种对生物质进行优化降解可以提高这种原材料生物精炼的效率。在本研究中,通过 , , , , , 和 spp. 等食用丝状真菌水解甜菜粕(SBP),对纤维素酶活性和还原糖(RS)生产的工艺参数(温度、时间和比例)进行了优化。在不同的固水()比(1:10 - 1:20)、不同的培养温度(20 - 35 °C)和处理时间(60 - 168 h)下分析了RS的产量。在单因素实验中,CCF 3264和CCF 3438菌株表现出最有效的羧甲基纤维素(CMC)降解活性以及从SBP生物质中回收糖的能力(15.9 - 44.8%)。数学数据评估表明,使用CCF 3264在26 °C温度、136 h处理时间和1:15固水比条件下对SBP进行降解,可实现最高的RS浓度(39.15 g/100 g干重)和纤维素分解活性(6.67 U/g干重)。本研究证明了真菌降解用于SBP生物精炼的潜力。