Suntory Global Innovation Center Limited, Research Institute, Seika-cho, Soraku-gun, Kyoto 6190284, Japan.
Sensors (Basel). 2022 Dec 30;23(1):407. doi: 10.3390/s23010407.
Bowel sound (BS) is receiving more attention as an indicator of gut health since it can be acquired non-invasively. Current gut health diagnostic tests require special devices that are limited to hospital settings. This study aimed to develop a prototype smartphone application that can record BS using built-in microphones and automatically analyze the sounds. Using smartphones, we collected BSs from 100 participants (age 37.6 ± 9.7). During screening and annotation, we obtained 5929 BS segments. Based on the annotated recordings, we developed and compared two BS recognition models: CNN and LSTM. Our CNN model could detect BSs with an accuracy of 88.9% andan F measure of 72.3% using cross evaluation, thus displaying better performance than the LSTM model (82.4% accuracy and 65.8% F measure using cross validation). Furthermore, the BS to sound interval, which indicates a bowel motility, predicted by the CNN model correlated to over 98% with manual labels. Using built-in smartphone microphones, we constructed a CNN model that can recognize BSs with moderate accuracy, thus providing a putative non-invasive tool for conveniently determining gut health and demonstrating the potential of automated BS research.
肠鸣音(BS)作为肠道健康的指标越来越受到关注,因为它可以非侵入性地获得。目前的肠道健康诊断测试需要特殊的设备,这些设备仅限于医院环境。本研究旨在开发一种原型智能手机应用程序,该应用程序可以使用内置麦克风记录 BS,并自动分析声音。我们使用智能手机从 100 名参与者(年龄 37.6 ± 9.7)中收集 BS。在筛选和注释过程中,我们获得了 5929 个 BS 片段。基于注释的记录,我们开发并比较了两种 BS 识别模型:CNN 和 LSTM。我们的 CNN 模型使用交叉评估可以检测到 88.9%的 BS,F 度量为 72.3%,因此表现优于 LSTM 模型(使用交叉验证的准确率为 82.4%,F 度量为 65.8%)。此外,由 CNN 模型预测的代表肠道蠕动的 BS 到声音间隔与手动标记高度相关,超过 98%。使用内置智能手机麦克风,我们构建了一个可以识别 BS 的 CNN 模型,其识别准确率适中,从而为方便确定肠道健康提供了一种潜在的非侵入性工具,并展示了自动 BS 研究的潜力。