Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
Infervision Medical Technology Co., Ltd, Beijing 100025, China.
Acad Radiol. 2024 Nov;31(11):4466-4477. doi: 10.1016/j.acra.2024.04.034. Epub 2024 May 11.
To evaluate the performance of dual-energy CT (DECT)-based radiomics models for identifying high-risk histopathologic phenotypes-serosal invasion (pT4a), lymph node metastasis (LNM), lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancer.
This prospective bi-center study recruited histologically confirmed gastric adenocarcinoma patients who underwent triple-phase enhanced DECT before gastrectomy between January 2021 and July 2023. Radiomics features were extracted from polychromatic/monochromatic (40 keV, 100 keV)/iodine images at arterial/venous/delay phase, respectively. Predictive features were selected in the training dataset using logistic regression classifier, and trained models were applied to the external validation dataset. Performances of clinical models, conventional contrast enhanced CT (CECT) models and DECT models were evaluated using areas under the receiver operating characteristic curve (AUCs).
In total, 503 patients were recruited: 396 at training dataset (60.1 ± 10.8 years, 110 females, 286 males) and 107 at validation dataset (61.4 ± 9.5 years, 29 females, 78 males). DECT models dichotomizing pT4a, LNM, LVI, and PNI achieved AUCs of 0.891, 0.817, 0.834, and 0.889, respectively, in the validation dataset, similar with the CECT models. In the training dataset, compared to the CECT model, the DECT model provided increased performance for identifying pT4a, LNM, LVI (all P<0.05), and similar performance for stratifying PNI (P = 0.104). The DECT models was associated with patient disease-free survival (all P<0.05).
DECT radiomics can stratify patients preoperatively according to high-risk histopathologic phenotypes for gastric cancer and are associated with patient disease-free survival in the training dataset.
评估双能 CT(DECT)基放射组学模型在识别胃癌高危组织病理学表型(浆膜浸润(pT4a)、淋巴结转移(LNM)、淋巴管浸润(LVI)和神经周围浸润(PNI))方面的性能。
本前瞻性双中心研究纳入了 2021 年 1 月至 2023 年 7 月期间接受术前三期增强 DECT 的经组织学证实的胃腺癌患者。从多色/单色(40keV、100keV)/碘图像在动脉/静脉/延迟期分别提取放射组学特征。使用逻辑回归分类器在训练数据集选择预测特征,并将训练模型应用于外部验证数据集。使用受试者工作特征曲线(AUC)下面积评估临床模型、常规增强 CT(CECT)模型和 DECT 模型的性能。
共纳入 503 例患者:训练数据集 396 例(60.1±10.8 岁,女性 110 例,男性 286 例),验证数据集 107 例(61.4±9.5 岁,女性 29 例,男性 78 例)。在验证数据集,将 pT4a、LNM、LVI 和 PNI 分为二分类的 DECT 模型的 AUC 分别为 0.891、0.817、0.834 和 0.889,与 CECT 模型相似。在训练数据集,与 CECT 模型相比,DECT 模型在识别 pT4a、LNM、LVI 方面提供了更高的性能(均 P<0.05),在分层 PNI 方面具有相似的性能(P=0.104)。DECT 模型与患者无病生存相关(均 P<0.05)。
DECT 放射组学可以在术前根据胃癌的高危组织病理学表型对患者进行分层,并与训练数据集患者的无病生存相关。