Suppr超能文献

用于处理不完整数据的多重稳健估计方法的统一框架。

A unified framework of multiply robust estimation approaches for handling incomplete data.

作者信息

Chen Sixia, Haziza David

机构信息

Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, 801 NE 13th ST, Oklahoma City, 73104, Oklahoma, USA.

Department of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, K1N 6N5, Ontario, Canada.

出版信息

Comput Stat Data Anal. 2023 Mar;179. doi: 10.1016/j.csda.2022.107646. Epub 2022 Oct 21.

Abstract

Missing data occur frequently in practice. Inverse probability weighting and imputation are regarded as two important approaches for handling missing data. However, the validity of these approaches depends on underlying model assumptions. A new general framework for multiply robust estimation procedures by combining multiple nonresponse and imputation models is proposed in the paper. The proposed method can be used to estimate both smooth and non-smooth parameters defined as the solution of some estimating equations. It includes population means, quantiles, and distribution functions as special cases. The asymptotic results of the proposed methods are established. The results of a simulation study and a real data application suggest that the proposed methods perform well in terms of bias and efficiency.

摘要

缺失数据在实际中经常出现。逆概率加权和插补被视为处理缺失数据的两种重要方法。然而,这些方法的有效性取决于潜在的模型假设。本文提出了一种通过组合多个无响应和插补模型的多重稳健估计程序的新通用框架。所提出的方法可用于估计定义为某些估计方程解的平滑和非平滑参数。它包括总体均值、分位数和分布函数等特殊情况。建立了所提出方法的渐近结果。模拟研究和实际数据应用的结果表明,所提出的方法在偏差和效率方面表现良好。

相似文献

3
A General Framework for Quantile Estimation with Incomplete Data.用于不完整数据分位数估计的通用框架。
J R Stat Soc Series B Stat Methodol. 2019 Apr;81(2):305-333. doi: 10.1111/rssb.12309. Epub 2019 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验