Suppr超能文献

使用具有离散表示的变压器进行稳健的前列腺疾病分类。

Robust prostate disease classification using transformers with discrete representations.

作者信息

Santhirasekaram Ainkaran, Winkler Mathias, Rockall Andrea, Glocker Ben

机构信息

Department of Computing, Imperial College London, London, UK.

Department of Surgery and Cancer, Imperial College London, London, UK.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jan;20(1):11-20. doi: 10.1007/s11548-024-03153-8. Epub 2024 May 13.

Abstract

PURPOSE

Automated prostate disease classification on multi-parametric MRI has recently shown promising results with the use of convolutional neural networks (CNNs). The vision transformer (ViT) is a convolutional free architecture which only exploits the self-attention mechanism and has surpassed CNNs in some natural imaging classification tasks. However, these models are not very robust to textural shifts in the input space. In MRI, we often have to deal with textural shift arising from varying acquisition protocols. Here, we focus on the ability of models to generalise well to new magnet strengths for MRI.

METHOD

We propose a new framework to improve the robustness of vision transformer-based models for disease classification by constructing discrete representations of the data using vector quantisation. We sample a subset of the discrete representations to form the input into a transformer-based model. We use cross-attention in our transformer model to combine the discrete representations of T2-weighted and apparent diffusion coefficient (ADC) images.

RESULTS

We analyse the robustness of our model by training on a 1.5 T scanner and test on a 3 T scanner and vice versa. Our approach achieves SOTA performance for classification of lesions on prostate MRI and outperforms various other CNN and transformer-based models in terms of robustness to domain shift and perturbations in the input space.

CONCLUSION

We develop a method to improve the robustness of transformer-based disease classification of prostate lesions on MRI using discrete representations of the T2-weighted and ADC images.

摘要

目的

近年来,利用卷积神经网络(CNN)对多参数磁共振成像进行自动前列腺疾病分类已显示出有前景的结果。视觉Transformer(ViT)是一种无卷积架构,仅利用自注意力机制,并且在一些自然成像分类任务中超越了CNN。然而,这些模型对输入空间中的纹理变化不是很鲁棒。在磁共振成像中,我们经常不得不应对因不同采集协议而产生的纹理变化。在此,我们关注模型对磁共振成像新磁场强度的良好泛化能力。

方法

我们提出一种新框架,通过使用矢量量化构建数据的离散表示来提高基于视觉Transformer的疾病分类模型的鲁棒性。我们对离散表示的一个子集进行采样,以形成基于Transformer模型的输入。我们在Transformer模型中使用交叉注意力来组合T2加权图像和表观扩散系数(ADC)图像的离散表示。

结果

我们通过在1.5T扫描仪上训练并在3T扫描仪上测试,反之亦然,来分析我们模型的鲁棒性。我们的方法在前列腺磁共振成像病变分类中实现了最优性能,并且在对输入空间中的域转移和扰动的鲁棒性方面优于各种其他基于CNN和Transformer的模型。

结论

我们开发了一种方法,利用T2加权图像和ADC图像的离散表示来提高基于Transformer的前列腺病变磁共振成像疾病分类的鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验