Suppr超能文献

使用磁共振成像进行前列腺癌分类的对抗训练

Adversarial training for prostate cancer classification using magnetic resonance imaging.

作者信息

Hu Lei, Zhou Da-Wei, Guo Xiang-Yu, Xu Wen-Hao, Wei Li-Ming, Zhao Jun-Gong

机构信息

Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.

State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, China.

出版信息

Quant Imaging Med Surg. 2022 Jun;12(6):3276-3287. doi: 10.21037/qims-21-1089.

Abstract

BACKGROUND

To use adversarial training to increase the generalizability and diagnostic accuracy of deep learning models for prostate cancer diagnosis.

METHODS

This multicenter study retrospectively included 396 prostate cancer patients who underwent magnetic resonance imaging (development set, 297 patients from Shanghai Jiao Tong University Affiliated Sixth People's Hospital and Eighth People's Hospital; test set, 99 patients from Renmin Hospital of Wuhan University). Two binary classification deep learning models for clinically significant prostate cancer classification [PM1, pretraining Visual Geometry Group network (VGGNet)-16-based model 1; PM2, pretraining residual network (ResNet)-50-based model 2] and two multiclass classification deep learning models for prostate cancer grading (PM3, pretraining VGGNet-16-based model 3; PM4: pretraining ResNet-50-based model 4) were built using apparent diffusion coefficient and T2-weighted images. These models were then retrained with adversarial examples starting from the initial random model parameters (AM1, adversarial training VGGNet-16 model 1; AM2, adversarial training ResNet-50 model 2; AM3, adversarial training VGGNet-16 model 3; AM4, adversarial training ResNet-50 model 4, respectively). To verify whether adversarial training can improve the diagnostic model's effectiveness, we compared the diagnostic performance of the deep learning methods before and after adversarial training. Receiver operating characteristic curve analysis was performed to evaluate significant prostate cancer classification models. Differences in areas under the curve (AUCs) were compared using Delong's tests. The quadratic weighted kappa score was used to verify the PCa grading models.

RESULTS

AM1 and AM2 had significantly higher AUCs than PM1 and PM2 in the internal validation dataset (0.84 0.89 and 0.83 0.87) and test dataset (0.73 0.86 and 0.72 0.82). AM3 and AM4 showed higher κ values than PM3 and PM4 in the internal validation dataset {0.266 [95% confidence interval (CI): 0.152-0.379] 0.292 (95% CI: 0.178-0.405) and 0.254 (95% CI: 0.159-0.390) 0.279 (95% CI: 0.163-0.396)} and test set [0.196 (95% CI: 0.029-0.362) 0.268 (95% CI: 0.109-0.427) and 0.183 (95% CI: 0.015-0.351) 0.228 (95% CI: 0.068-0.389)].

CONCLUSIONS

Using adversarial examples to train prostate cancer classification deep learning models can improve their generalizability and classification abilities.

摘要

背景

使用对抗训练提高深度学习模型在前列腺癌诊断中的泛化能力和诊断准确性。

方法

这项多中心研究回顾性纳入了396例接受磁共振成像的前列腺癌患者(训练集,来自上海交通大学附属第六人民医院和第八人民医院的297例患者;测试集,来自武汉大学人民医院的99例患者)。使用表观扩散系数和T2加权图像构建了两个用于临床显著性前列腺癌分类的二元分类深度学习模型[PM1,基于预训练视觉几何组网络(VGGNet)-16的模型1;PM2,基于预训练残差网络(ResNet)-50的模型2]以及两个用于前列腺癌分级的多类分类深度学习模型(PM3,基于预训练VGGNet-16的模型3;PM4:基于预训练ResNet-50的模型4)。然后从初始随机模型参数开始,使用对抗样本对这些模型进行再训练(分别为AM1,对抗训练VGGNet-16模型1;AM2,对抗训练ResNet-50模型2;AM3,对抗训练VGGNet-16模型3;AM4,对抗训练ResNet-50模型4)。为了验证对抗训练是否能提高诊断模型的有效性,我们比较了对抗训练前后深度学习方法的诊断性能。进行了受试者操作特征曲线分析以评估显著性前列腺癌分类模型。使用德龙检验比较曲线下面积(AUC)的差异。使用二次加权kappa评分来验证前列腺癌分级模型。

结果

在内部验证数据集(0.84±0.89和0.83±0.87)和测试数据集(0.73±0.86和0.72±0.82)中,AM1和AM2的AUC显著高于PM1和PM2。在内部验证数据集{0.266[95%置信区间(CI):0.152 - 0.379]±0.292(95%CI:0.178 - 0.405)和0.254(95%CI:0.159 - 0.390)±0.279(95%CI:0.163 - 0.396)}和测试集[0.196(95%CI:0.029 - 0.362)±0.268(95%CI:0.109 - 0.427)和0.183(95%CI:0.015 - 0.351)±0.228(95%CI:0.068 - 0.389)]中,AM3和AM4的κ值高于PM3和PM4。

结论

使用对抗样本训练前列腺癌分类深度学习模型可提高其泛化能力和分类能力。

相似文献

引用本文的文献

本文引用的文献

7
On the robustness of skeleton detection against adversarial attacks.对抗攻击下骨架检测的稳健性研究。
Neural Netw. 2020 Dec;132:416-427. doi: 10.1016/j.neunet.2020.09.018. Epub 2020 Sep 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验