Suppr超能文献

单细胞和 bulk RNA-Seq 分析的整合通过坏死性凋亡的无附著性凋亡基因特征提高肺腺癌中 PD-1/PD-L1 免疫治疗反应的预后准确性。

Integrated single-cell and bulk RNA-Seq analysis enhances prognostic accuracy of PD-1/PD-L1 immunotherapy response in lung adenocarcinoma through necroptotic anoikis gene signatures.

机构信息

Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.

Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.

出版信息

Sci Rep. 2024 May 13;14(1):10873. doi: 10.1038/s41598-024-61629-8.

Abstract

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.

摘要

除了带来显著的诊断和治疗挑战外,肺腺癌 (LUAD) 是最常见的肺癌形式。我们使用 scRNA-Seq 和 bulk RNA-Seq 数据,鉴定了三个基因,称为 HMR、FAM83A 和 KRT6A,这些基因与坏死性凋亡相关基因表达有关。在 GSE50081 数据集上进行的初步验证表明,该模型能够将 LUAD 患者分为高风险和低风险组,两组之间存在显著的生存差异。该模型进一步应用于预测对 PD-1/PD-L1 阻断疗法的反应,使用 IMvigor210 和 GSE78220 队列,与患者结果具有强烈相关性,突出了其在个性化免疫治疗中的潜力。此外,使用定量 PCR (qPCR) 和 Western blot 分析分析 LUAD 细胞系,以确认它们的表达水平,进一步证实了该模型在 LUAD 病理生理学中的相关性。还探索了这些基因的突变景观,通过泛癌分析揭示了它们在各种癌症类型中的广泛意义。该研究还深入探讨了分子亚群聚类,揭示了不同的表达谱与不同的生存结果之间的关联,强调了该模型在精准肿瘤学中的应用。此外,与坏死性凋亡无附著标志相关的免疫细胞浸润的多样性,表明其对 LUAD 免疫逃逸机制具有重要意义。虽然这些发现为 LUAD 的个性化治疗,特别是免疫治疗,提供了一个有前途的方向,但也承认数据集的回顾性性质和需要更大样本量等限制。前瞻性临床试验和进一步的实验研究对于验证这些发现和增强我们的预后模型的临床适用性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf74/11091124/4fed9fbc38f6/41598_2024_61629_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验