Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, South Korea.
Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
Sci Rep. 2024 Sep 10;14(1):21096. doi: 10.1038/s41598-024-72108-5.
Immune checkpoint blockades are actively adopted in diverse cancer types including metastatic melanoma and lung cancer. Despite of durable response in 20-30% of patients, we still lack molecular markers that could predict the patient responses reliably before treatment. Here we present a composite model for predicting anti-PD-1 response based on tumor mutation burden (TMB) and transcriptome sequencing data of 85 lung adenocarcinoma (LUAD) patients who received anti-PD-(L)1 treatment. We found that TMB was a good predictor (AUC = 0.81) for PD-L1 negative patients (n = 20). For PD-L1 positive patients (n = 65), we built an ensemble model of 100 XGBoost learning machines where gene expression, gene set activities and cell type composition were used as input features. The transcriptome-based models showed excellent accuracy (AUC > 0.9) and highlighted the contribution of T cell activities. Importantly, nonresponder patients with high prediction score turned out to have high CTLA4 expression, which suggested that neoadjuvant CTLA4 combination therapy might be effective for these patients. Our data and analysis results provide valuable insights into developing biomarkers and strategies for treating LUAD patients using immune checkpoint inhibitors.
免疫检查点阻断剂在包括转移性黑色素瘤和肺癌在内的多种癌症类型中得到了积极的应用。尽管在 20-30%的患者中产生了持久的反应,但我们仍然缺乏能够在治疗前可靠地预测患者反应的分子标志物。在这里,我们提出了一种基于 85 名接受抗 PD-(L)1 治疗的肺腺癌 (LUAD) 患者的肿瘤突变负担 (TMB) 和转录组测序数据的预测抗 PD-1 反应的综合模型。我们发现 TMB 是 PD-L1 阴性患者的良好预测指标 (AUC=0.81) (n=20)。对于 PD-L1 阳性患者 (n=65),我们构建了一个由 100 个 XGBoost 学习机组成的集成模型,其中基因表达、基因集活性和细胞类型组成被用作输入特征。基于转录组的模型表现出优异的准确性 (AUC>0.9),并突出了 T 细胞活性的贡献。重要的是,预测评分高的无反应患者表现出高 CTLA4 表达,这表明新辅助 CTLA4 联合治疗可能对这些患者有效。我们的数据和分析结果为开发生物标志物和使用免疫检查点抑制剂治疗 LUAD 患者的策略提供了有价值的见解。