Suppr超能文献

关于评估时间内多种疾病变化的方法的建议:使方法与目的保持一致。

Recommendations on Methods for Assessing Multimorbidity Changes Over Time: Aligning the Method to the Purpose.

机构信息

College of Nursing, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

出版信息

J Gerontol A Biol Sci Med Sci. 2024 Jul 1;79(7). doi: 10.1093/gerona/glae122.

Abstract

BACKGROUND

The rapidly growing field of multimorbidity research demonstrates that changes in multimorbidity in mid- and late-life have far reaching effects on important person-centered outcomes, such as health-related quality of life. However, there are few organizing frameworks and comparatively little work weighing the merits and limitations of various quantitative methods applied to the longitudinal study of multimorbidity.

METHODS

We identify and discuss methods aligned to specific research objectives with the goals of (i) establishing a common language for assessing longitudinal changes in multimorbidity, (ii) illuminating gaps in our knowledge regarding multimorbidity progression and critical periods of change, and (iii) informing research to identify groups that experience different rates and divergent etiological pathways of disease progression linked to deterioration in important health-related outcomes.

RESULTS

We review practical issues in the measurement of multimorbidity, longitudinal analysis of health-related data, operationalizing change over time, and discuss methods that align with 4 general typologies for research objectives in the longitudinal study of multimorbidity: (i) examine individual change in multimorbidity, (ii) identify subgroups that follow similar trajectories of multimorbidity progression, (iii) understand when, how, and why individuals or groups shift to more advanced stages of multimorbidity, and (iv) examine the coprogression of multimorbidity with key health domains.

CONCLUSIONS

This work encourages a systematic approach to the quantitative study of change in multimorbidity and provides a valuable resource for researchers working to measure and minimize the deleterious effects of multimorbidity on aging populations.

摘要

背景

多病共存研究领域的迅速发展表明,中老年多病共存状况的变化对健康相关生活质量等重要以人为本的结果有着深远的影响。然而,目前几乎没有组织框架,也很少有工作权衡应用于多病共存纵向研究的各种定量方法的优缺点。

方法

我们确定并讨论了与特定研究目标一致的方法,目标是:(i) 为评估多病共存的纵向变化建立共同语言;(ii) 阐明我们对多病共存进展和关键变化期的认识差距;以及 (iii) 为研究提供信息,以确定那些经历不同疾病进展速度和不同病因途径的群体,这些群体与重要健康相关结果的恶化有关。

结果

我们回顾了多病共存的测量、与健康相关数据的纵向分析、随时间变化的操作化等实际问题,并讨论了与多病共存纵向研究的 4 种一般研究目标类型一致的方法:(i) 检查多病共存的个体变化;(ii) 确定遵循相似多病共存进展轨迹的亚组;(iii) 了解个人或群体何时、如何以及为何转变为多病共存的更高级阶段;以及 (iv) 研究多病共存与主要健康领域的共同进展。

结论

这项工作鼓励对多病共存变化的定量研究采用系统方法,并为努力测量和减轻多病共存对老年人口的不利影响的研究人员提供了有价值的资源。

相似文献

1
Recommendations on Methods for Assessing Multimorbidity Changes Over Time: Aligning the Method to the Purpose.
J Gerontol A Biol Sci Med Sci. 2024 Jul 1;79(7). doi: 10.1093/gerona/glae122.
2
Interventions for improving outcomes in patients with multimorbidity in primary care and community settings.
Cochrane Database Syst Rev. 2016 Mar 14;3(3):CD006560. doi: 10.1002/14651858.CD006560.pub3.
3
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
6
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
8
Reducing health inequalities through general practice: a realist review and action framework.
Health Soc Care Deliv Res. 2024 Mar;12(7):1-104. doi: 10.3310/YTWW7032.
9
Comprehensive care programmes for children with medical complexity.
Cochrane Database Syst Rev. 2024 May 30;5(5):CD013329. doi: 10.1002/14651858.CD013329.pub2.

引用本文的文献

1
Dynamics of multimorbidity, health expectancy, and survival in middle aged and older individuals.
J Gerontol A Biol Sci Med Sci. 2025 Aug 23;80(9). doi: 10.1093/gerona/glaf164.

本文引用的文献

1
Measuring multimorbidity in research: Delphi consensus study.
BMJ Med. 2022 Jul 27;1(1):e000247. doi: 10.1136/bmjmed-2022-000247. eCollection 2022.
2
An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software.
Adv Life Course Res. 2020 Mar;43:100323. doi: 10.1016/j.alcr.2019.100323. Epub 2020 Jan 25.
3
Multidimensional trajectories of multimorbidity, functional status, cognitive performance, and depressive symptoms among diverse groups of older adults.
J Multimorb Comorb. 2022 Nov 30;12:26335565221143012. doi: 10.1177/26335565221143012. eCollection 2022 Jan-Dec.
4
Ten frequently asked questions about latent transition analysis.
Psychol Methods. 2023 Apr;28(2):284-300. doi: 10.1037/met0000486. Epub 2022 Jul 14.
5
Inference for transition probabilities in non-Markov multi-state models.
Lifetime Data Anal. 2022 Oct;28(4):585-604. doi: 10.1007/s10985-022-09560-w. Epub 2022 Jun 28.
6
Cohort Trends in the Burden of Multiple Chronic Conditions Among Aging U.S. Adults.
J Gerontol B Psychol Sci Soc Sci. 2022 Oct 6;77(10):1867-1879. doi: 10.1093/geronb/gbac070.
8
Patterns of multimorbidity trajectories and their correlates among Korean older adults.
Age Ageing. 2021 Jun 28;50(4):1336-1341. doi: 10.1093/ageing/afab002.
9
Age period cohort analysis: a review of what we should and shouldn't do.
Ann Hum Biol. 2020 Mar;47(2):208-217. doi: 10.1080/03014460.2019.1707872.
10
Identifying typical trajectories in longitudinal data: modelling strategies and interpretations.
Eur J Epidemiol. 2020 Mar;35(3):205-222. doi: 10.1007/s10654-020-00615-6. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验