Suppr超能文献

天冬氨酰肽酶 May1 通过改变真菌病原体细胞壁组成诱导宿主炎症反应。

Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen .

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia, USA.

Department of Plant Biology, University of Georgia, Athens, Georgia, USA.

出版信息

mBio. 2024 Jun 12;15(6):e0092024. doi: 10.1128/mbio.00920-24. Epub 2024 May 14.

Abstract

UNLABELLED

causes cryptococcal meningoencephalitis, a disease that kills more than 180,000 people annually. Contributing to its success as a fungal pathogen is its cell wall surrounded by a capsule. When the cryptococcal cell wall is compromised, exposed pathogen-associated molecular pattern molecules (PAMPs) could trigger host recognition and initiate attack against this fungus. Thus, cell wall composition and structure are tightly regulated. The cryptococcal cell wall is unusual in that chitosan, the acetylated form of chitin, is predominant over chitin and is essential for virulence. Recently, it was shown that acidic pH weakens the cell wall and increases exposure of PAMPs partly due to decreased chitosan levels. However, the molecular mechanism responsible for the cell wall remodeling in acidic pH is unknown. In this study, by screening for genes involved in cryptococcal tolerance to high levels of CO, we serendipitously discovered that the aspartyl peptidase May1 contributes to cryptococcal sensitivity to high levels of CO due to acidification of unbuffered media. Overexpression of increases the cryptococcal cell size and elevates PAMP exposure, causing a hyper-inflammatory response in the host while deletion does the opposite. We discovered that May1 weakens the cell wall and reduces the chitosan level, partly due to its involvement in the degradation of Chs3, the sole chitin synthase that supplies chitin to be converted to chitosan. Consistently, overexpression of largely rescues the phenotype of in acidic media. Collectively, we demonstrate that May1 remodels the cryptococcal cell wall in acidic pH by reducing chitosan levels through its influence on Chs3.

IMPORTANCE

The fungal cell wall is a dynamic structure, monitoring and responding to internal and external stimuli. It provides a formidable armor to the fungus. However, in a weakened state, the cell wall also triggers host immune attack when PAMPs, including glucan, chitin, and mannoproteins, are exposed. In this work, we found that the aspartyl peptidase May1 impairs the cell wall of and increases the exposure of PAMPs in the acidic environment by reducing the chitosan level. Under acidic conditions, May1 is involved in the degradation of the chitin synthase Chs3, which supplies chitin to be deacetylated to chitosan. Consistently, the severe deficiency of chitosan in acidic pH can be rescued by overexpressing . These findings improve our understanding of cell wall remodeling and reveal a potential target to compromise the cell wall integrity in this important fungal pathogen.

摘要

未加标签

导致隐球菌性脑膜炎,一种每年导致超过 18 万人死亡的疾病。其作为真菌病原体成功的原因是其细胞壁被胶囊包围。当隐球菌细胞壁受损时,暴露的病原体相关分子模式分子(PAMPs)可能会触发宿主识别并引发对这种真菌的攻击。因此,细胞壁的组成和结构受到严格调控。隐球菌细胞壁的独特之处在于壳聚糖,即几丁质的乙酰化形式,比几丁质更为常见,对毒力至关重要。最近的研究表明,酸性 pH 值会削弱细胞壁并增加 PAMPs 的暴露,部分原因是壳聚糖水平降低。然而,导致酸性 pH 值下细胞壁重塑的分子机制尚不清楚。在这项研究中,我们通过筛选参与隐球菌耐受高水平 CO 的基因,偶然发现天冬氨酸肽酶 May1 由于未缓冲介质的酸化而有助于隐球菌对高水平 CO 的敏感性。过量表达 增加了隐球菌细胞的大小并提高了 PAMP 的暴露,导致宿主发生过度炎症反应,而 缺失则相反。我们发现 May1 削弱了细胞壁并降低了壳聚糖水平,部分原因是其参与了 Chs3 的降解,Chs3 是唯一向壳聚糖提供几丁质以转化为壳聚糖的几丁质合酶。一致地, 过表达在酸性介质中在很大程度上挽救了 缺失表型。总的来说,我们证明 May1 通过影响 Chs3 降低壳聚糖水平来重塑酸性 pH 值下的隐球菌细胞壁。

意义

真菌细胞壁是一个动态结构,可对内外部刺激进行监测并作出反应。它为真菌提供了强大的保护。然而,在较弱的状态下,当暴露包括葡聚糖、几丁质和甘露蛋白在内的 PAMPs 时,细胞壁也会引发宿主免疫攻击。在这项工作中,我们发现天冬氨酸肽酶 May1 通过降低壳聚糖水平,削弱了 和增加了酸性环境中 PAMPs 的暴露。在酸性条件下,May1 参与了几丁质合酶 Chs3 的降解,Chs3 向壳聚糖提供几丁质以进行去乙酰化。一致地,酸性 pH 值下严重缺乏壳聚糖可通过过表达 得到挽救。这些发现提高了我们对细胞壁重塑的理解,并揭示了一种潜在的靶点,可破坏这种重要真菌病原体的细胞壁完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feda/11237595/b530a193441a/mbio.00920-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验