School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China.
Mol Pharm. 2024 Jun 3;21(6):2970-2980. doi: 10.1021/acs.molpharmaceut.4c00097. Epub 2024 May 14.
One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.
阻碍纳米药物临床转化的一个重要原因是静脉注射的纳米颗粒被单核吞噬细胞系统(特别是肝脏中的枯否细胞)快速清除,导致纳米药物对肿瘤治疗的递送效率低下。阈值理论认为,肝脏清除纳米颗粒的能力是有限的,单次高剂量的纳米颗粒可以降低肝脏清除效率,使更多的纳米药物到达肿瘤组织,从而增强治疗效果。基于这一理论,研究人员基于相同的纳米载体系统进行了大量的验证研究。这些研究涉及使用白蛋白纳米颗粒来提高白蛋白纳米药物的治疗效果,以及使用聚乙二醇(PEG)修饰的脂质体纳米颗粒来提高 PEG 化脂质体纳米药物的疗效。然而,目前尚无研究表明空白纳米颗粒和纳米药物属于不同的纳米载体系统时,阈值理论的可行性。在这项研究中,我们使用牛血清白蛋白制备了两种不同大小的白蛋白纳米颗粒。我们使用市售的纳米药物脂质体阿霉素盐酸盐注射液(商品名:LIBOD,生产商:上海复旦张江生物医药股份有限公司)作为代表性的纳米药物。通过体内实验,我们发现使用白蛋白纳米颗粒的阈值剂量仍然可以降低 LIBOD 的清除率,延长其在体内的时间,增加血浆浓度-时间曲线下面积(AUC),并导致药物在肿瘤部位的积累增加。此外,体内疗效和安全性评估进一步表明,100nm 白蛋白纳米颗粒的阈值剂量可以增强 LIBOD 的抗肿瘤作用,而不会对动物造成伤害。在研究过程中,我们发现白蛋白纳米颗粒的粒径在相同的阈值剂量下影响纳米药物的体内分布。与 200nm 白蛋白纳米颗粒相比,100nm 白蛋白纳米颗粒更有效地降低 LIBOD 的清除效率,增强纳米药物在肿瘤部位的积累,值得进一步研究。本研究利用白蛋白纳米颗粒降低肝脏清除效率,提高非白蛋白纳米载体脂质体纳米药物的递送效率,为提高不同载体系统的纳米药物疗效和临床转化提供了新途径。