Suppr超能文献

通过微胶囊技术构建用于稳定锂电池的阻燃聚合物电解质。

Building Flame-Retardant Polymer Electrolytes via Microcapsule Technology for Stable Lithium Batteries.

作者信息

Zhang Chao, Li Caixia, Zhang Kai, Zhang Shenghao, Liu Jingwen, Wang Minghui, Wang Lei

机构信息

State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 May 29;16(21):27470-27480. doi: 10.1021/acsami.4c04154. Epub 2024 May 14.

Abstract

Flame retardants could improve the safety properties of lithium batteries (LBs) with the sacrifice of electrochemical performance due to parasitic reactions. To concur with this, we designed thermal-response clothes for hexachlorophosphazene (HCP) additives by the microcapsule technique with urea-formaldehyde (UF) resin as the shell. HCP@UF combines with polyacrylonitrile (PAN) by hydrogen bonds successfully to form PAN-HCP@UF as the flame-retardant solid polymer electrolyte. The hydrogen bonds ensure excellent mechanical properties of the polymer electrolyte. The multiscale free radical-annihilating agent HCP effectively eliminates hydrogen free radicals of electrolytes under high temperature, showing excellent flame retardation. During the operation of the battery, functional groups on the UF resin act as active sites to promote the migration of lithium ions, while the internal HCP is protected from electrochemical reaction. With 25% HCP@UF addition, the limiting oxygen index of the PAN-HCP@UF increases to 28% and the Li transfer number up to 0.80. By UF protection, the initial capacity retention rate of the Li||LFP battery that assembles with PAN-HCP@UF is 88.8% after 500 cycles at 0.5 C. Thus, the microcapsule-encapsulated approach is deemed to provide an innovative strategy to prepare high-safety solid-state LB with a stable long cycle life.

摘要

由于寄生反应,阻燃剂虽能提高锂电池(LB)的安全性能,但会牺牲其电化学性能。与此相符的是,我们采用微胶囊技术,以脲醛(UF)树脂为壳,设计了用于六氯环三磷腈(HCP)添加剂的热响应型衣物。HCP@UF通过氢键成功与聚丙烯腈(PAN)结合,形成PAN-HCP@UF作为阻燃固态聚合物电解质。氢键确保了聚合物电解质具有优异的机械性能。多尺度自由基湮灭剂HCP在高温下能有效消除电解质中的氢自由基,表现出优异的阻燃性能。在电池运行过程中,UF树脂上的官能团作为活性位点促进锂离子迁移,而内部的HCP则免受电化学反应影响。添加25%的HCP@UF后,PAN-HCP@UF的极限氧指数提高到28%,锂转移数提高到0.80。通过UF保护,与PAN-HCP@UF组装的Li||LFP电池在0.5 C下循环500次后,初始容量保持率为88.8%。因此,微胶囊封装方法被认为是一种制备具有稳定长循环寿命的高安全性固态锂电池的创新策略。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验