Daniels Alyssa, Wölper Christoph, Haberhauer Gebhard
Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D, 45117, Essen, Germany.
Chemistry. 2024 Jul 2;30(37):e202401070. doi: 10.1002/chem.202401070. Epub 2024 May 14.
Green chemistry strives for sustainability at the molecular level and is gaining increasing relevance in the development of chemical reactions. The haloalkynylation reaction is a highly atom-economical C-C coupling reaction that was previously only achieved using transition metal catalysts. It enables the introduction of an alkyne unit and a halogen atom into the target molecule. Herein, we present a haloalkynylation reaction catalyzed by indium(III) halides. The use of indium(III) bromide as a catalyst leads exclusively to the cis addition products with yields up to 86 %. In addition, iodoacetylenes can be applied for the first time for the haloalkynylation reaction of internal alkynes which is an important step forward in the development of industrially relevant and sustainable catalysts. In contrast to gold catalysis, which proceeds via a similar mechanism, the use of alkyl-substituted haloacetylenes as reagents is also possible. Based on C labeling experiments and quantum chemical calculations, we postulate two possible mechanisms for the indium(III)-catalyzed haloalkynylation reactions.
绿色化学致力于在分子层面实现可持续性,并且在化学反应的发展中变得越来越重要。卤代炔基化反应是一种原子经济性很高的碳-碳偶联反应,此前仅能通过过渡金属催化剂来实现。它能够将一个炔基单元和一个卤原子引入目标分子。在此,我们展示了一种由卤化铟(III)催化的卤代炔基化反应。使用溴化铟(III)作为催化剂仅生成顺式加成产物,产率高达86%。此外,碘代乙炔首次可用于内部炔烃的卤代炔基化反应,这是在开发具有工业相关性和可持续性的催化剂方面向前迈出的重要一步。与通过类似机理进行的金催化不同,使用烷基取代的卤代乙炔作为试剂也是可行的。基于碳标记实验和量子化学计算,我们推测了铟(III)催化的卤代炔基化反应的两种可能机理。