College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
Nano Lett. 2024 May 29;24(21):6376-6385. doi: 10.1021/acs.nanolett.4c01352. Epub 2024 May 14.
The fibrous extracellular matrix (ECM) is vital for tissue regeneration and impacts implanted device treatments. Previous research on fibrous biomaterials shows varying cellular reactions to surface orientation, often due to unclear interactions between surface topography and substrate elasticity. Our study addresses this gap by achieving the rapid creation of hydrogels with diverse fibrous topographies and varying substrate moduli through a surface printing strategy. Cells exhibit heightened traction force on nanopatterned soft hydrogels, particularly with randomly distributed patterns compared with regular soft hydrogels. Meanwhile, on stiff hydrogels featuring an aligned topography, optimal cellular mechanosensing is observed compared to random topography. Mechanistic investigations highlight that cellular force-sensing and adhesion are influenced by the interplay of pattern deformability and focal adhesion orientation, subsequently mediating stem cell differentiation. Our findings highlight the importance of combining substrate modulus and topography to guide cellular behavior in designing advanced tissue engineering biomaterials.
纤维细胞外基质(ECM)对于组织再生至关重要,并影响植入设备的治疗效果。先前关于纤维生物材料的研究表明,细胞对表面取向的反应各不相同,这通常是由于表面形貌和基底弹性之间的相互作用不明确。我们的研究通过表面印刷策略实现了具有不同纤维形貌和不同基底模量的水凝胶的快速制备,从而解决了这一差距。与规则的软水凝胶相比,细胞在纳米图案化的软水凝胶上表现出更高的牵引力,特别是对于随机分布的图案。同时,在具有定向形貌的刚性水凝胶上,与随机形貌相比,观察到最佳的细胞机械感知。机制研究强调,细胞力感应和黏附受到图案可变形性和焦点黏附定向的相互作用的影响,进而介导干细胞分化。我们的研究结果强调了结合基底模量和形貌来指导细胞行为在设计先进的组织工程生物材料中的重要性。
Acta Biomater. 2016-12
ACS Appl Mater Interfaces. 2024-10-1
Am J Physiol Lung Cell Mol Physiol. 2025-3-1
Tissue Eng Part A. 2025-2
J Nanobiotechnology. 2025-8-20
Biosens Bioelectron. 2025-6-1