Xiao Yi, Yang Shiyan, Sun Yang, Sah Robert L, Wang Jincheng, Han Chunshan
Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China.
Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China.
Int J Nanomedicine. 2024 Nov 29;19:12743-12768. doi: 10.2147/IJN.S492020. eCollection 2024.
Nanoscale morphologies on the surface of substrates/scaffolds have gained considerable attention in cartilage tissue engineering for their potential to improve chondrogenic differentiation and cartilage regeneration outcomes by mimicking the topographical and biophysical properties of the extracellular matrix (ECM). To evaluate the influence of nanoscale surface morphologies on chondrogenic differentiation of stem cells and discuss available strategies, we systematically searched evidence according to the PRISMA guidelines on PubMed, Embase, Web of Science, and Cochrane (until April 2024) and registered on the OSF (osf.io/3kvdb). The inclusion criteria were (in vitro) studies reporting the chondrogenic differentiation outcomes of nanoscale morphologies on the surface of substrates/scaffolds. The risk of bias (RoB) was assessed using the JBI-adapted quasi-experimental study assessment tool. Out of 1530 retrieved articles, 14 studies met the inclusion criteria. The evidence suggests that nanoholes, nanogrills, nanoparticles with a diameter of 10-40nm, nanotubes with a diameter of 70-100nm, nanopillars with a height of 127-330nm, and hexagonal nanostructures with a periodicity of 302-733nm on the surface of substrates/scaffolds result in better cell adhesion, growth, and chondrogenic differentiation of stem cells compared to the smooth/unpatterned ones through increasing integrin expression. Large nanoparticles with 300-1200nm diameter promote pre-chondrogenic cellular aggregation. The synergistic effects of the surface nanoscale topography and other environmental physical characteristics, such as matrix stiffness, also play important in the chondrogenic differentiation of stem cells. The RoB was low in 86% (12/14) of studies and high in 14% (2/14). Our study demonstrates that nanomorphologies with specific controlled properties engineered on the surface of substrates/scaffolds enhance stem cells' chondrogenic differentiation, which may benefit cartilage regeneration. However, given the variability in experimental designs and lack of reporting across studies, the results should be interpreted with caution.
在软骨组织工程中,基质/支架表面的纳米级形态因其通过模拟细胞外基质(ECM)的拓扑和生物物理特性来改善软骨生成分化和软骨再生结果的潜力而备受关注。为了评估纳米级表面形态对干细胞软骨生成分化的影响并讨论可用策略,我们根据PRISMA指南在PubMed、Embase、Web of Science和Cochrane上系统检索证据(截至2024年4月),并在OSF(osf.io/3kvdb)上进行了注册。纳入标准为(体外)研究报告基质/支架表面纳米级形态的软骨生成分化结果。使用JBI改编的准实验研究评估工具评估偏倚风险(RoB)。在检索到的1530篇文章中,有14项研究符合纳入标准。证据表明,与光滑/无图案的相比,基质/支架表面的纳米孔、纳米格栅、直径为10 - 40nm的纳米颗粒、直径为70 - 100nm的纳米管、高度为127 - 330nm的纳米柱以及周期为302 - 733nm的六边形纳米结构通过增加整合素表达,可导致干细胞更好的细胞黏附、生长和软骨生成分化。直径为300 - 1200nm的大纳米颗粒促进软骨前体细胞聚集。表面纳米级拓扑结构与其他环境物理特征(如基质刚度)的协同作用在干细胞的软骨生成分化中也起重要作用。86%(12/14)的研究RoB较低,14%(2/14)的研究RoB较高。我们的研究表明,在基质/支架表面设计的具有特定可控特性的纳米形态可增强干细胞的软骨生成分化,这可能有益于软骨再生。然而,鉴于实验设计的变异性以及研究间缺乏报告,结果应谨慎解释。