Suppr超能文献

HAMMF:用于阿尔茨海默病计算机辅助诊断的基于层次注意力的多任务多模态融合模型。

HAMMF: Hierarchical attention-based multi-task and multi-modal fusion model for computer-aided diagnosis of Alzheimer's disease.

作者信息

Liu Xiao, Li Weimin, Miao Shang, Liu Fangyu, Han Ke, Bezabih Tsigabu T

机构信息

School of Computer Engineering and Science, Shanghai University, Shanghai, China.

School of Computer Engineering and Science, Shanghai University, Shanghai, China.

出版信息

Comput Biol Med. 2024 Jun;176:108564. doi: 10.1016/j.compbiomed.2024.108564. Epub 2024 May 8.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative condition, and early intervention can help slow its progression. However, integrating multi-dimensional information and deep convolutional networks increases the model parameters, affecting diagnosis accuracy and efficiency and hindering clinical diagnostic model deployment. Multi-modal neuroimaging can offer more precise diagnostic results, while multi-task modeling of classification and regression tasks can enhance the performance and stability of AD diagnosis. This study proposes a Hierarchical Attention-based Multi-task Multi-modal Fusion model (HAMMF) that leverages multi-modal neuroimaging data to concurrently learn AD classification tasks, cognitive score regression, and age regression tasks using attention-based techniques. Firstly, we preprocess MRI and PET image data to obtain two modal data, each containing distinct information. Next, we incorporate a novel Contextual Hierarchical Attention Module (CHAM) to aggregate multi-modal features. This module employs channel and spatial attention to extract fine-grained pathological features from unimodal image data across various dimensions. Using these attention mechanisms, the Transformer can effectively capture correlated features of multi-modal inputs. Lastly, we adopt multi-task learning in our model to investigate the influence of different variables on diagnosis, with a primary classification task and a secondary regression task for optimal multi-task prediction performance. Our experiments utilized MRI and PET images from 720 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The results show that our proposed model achieves an overall accuracy of 93.15% for AD/NC recognition, and the visualization results demonstrate its strong pathological feature recognition performance.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,早期干预有助于减缓其进展。然而,整合多维度信息和深度卷积网络会增加模型参数,影响诊断准确性和效率,阻碍临床诊断模型的部署。多模态神经成像可以提供更精确的诊断结果,而分类和回归任务的多任务建模可以提高AD诊断的性能和稳定性。本研究提出了一种基于分层注意力的多任务多模态融合模型(HAMMF),该模型利用多模态神经成像数据,使用基于注意力的技术同时学习AD分类任务、认知评分回归和年龄回归任务。首先,我们对MRI和PET图像数据进行预处理,以获得包含不同信息的两种模态数据。接下来,我们引入了一种新颖的上下文分层注意力模块(CHAM)来聚合多模态特征。该模块采用通道和空间注意力从不同维度的单模态图像数据中提取细粒度的病理特征。利用这些注意力机制,Transformer可以有效地捕捉多模态输入的相关特征。最后,我们在模型中采用多任务学习来研究不同变量对诊断的影响,以主要分类任务和次要回归任务实现最佳的多任务预测性能。我们的实验使用了阿尔茨海默病神经成像计划(ADNI)数据集中720名受试者的MRI和PET图像。结果表明,我们提出的模型在AD/NC识别方面的总体准确率达到93.15%,可视化结果证明了其强大的病理特征识别性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验