Suppr超能文献

开发一种新型同心微脑电阵列,可通过多个电极尺寸同时检测单个位置。

Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes.

机构信息

Biomedical & Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America.

Division of Engineering, Mayo Clinic, Rochester, MN, United States of America.

出版信息

Biomed Phys Eng Express. 2024 Jun 5;10(4). doi: 10.1088/2057-1976/ad4b1c.

Abstract

Detection of the epileptogenic zone is critical, especially for patients with drug-resistant epilepsy. Accurately mapping cortical regions exhibiting high activity during spontaneous seizure events while detecting neural activity up to 500 Hz can assist clinicians' surgical decisions and improve patient outcomes.We designed, fabricated, and tested a novel hybrid, multi-scale micro-electrocorticography (micro-ECoG) array with a unique embedded configuration. This array was compared to a commercially available microelectrode array (Neuronexus) for recording neural activity in rodent sensory cortex elicited by somatosensory evoked potentials and pilocarpine-induced seizures.Evoked potentials and spatial maps recorded by the multi-scale array ('micros', 'mesos', and 'macros' refering to the relative electrode sizes, 40 micron, 1 mm, and 4 mm respectively) were comparable to the Neuronexus array. The SSEPs recorded with the micros had higher peak amplitudes and greater signal power than those recorded by the larger mesos and macro. Seizure onset events and high-frequency oscillations (∼450 Hz) were detected on the multi-scale, similar to the commercially available array. The micros had greater SNR than the mesos and macro over the 5-1000 Hz frequency range during seizure monitoring. During cortical stimulation experimentation, the mesos successfully elicited motor effects.Previous studies have compared macro- and microelectrodes for localizing seizure activity in adjacent regions. The multi-scale design validated here is the first to simultaneously measure macro- and microelectrode signals from the same overlapping cortical area. This enables direct comparison of microelectrode recordings to the macroelectrode recordings used in standard neurosurgical practice. Previous studies have also shown that cortical regions generating high-frequency oscillations are at an increased risk for becoming epileptogenic zones. More accurate mapping of these micro seizures may improve surgical outcomes for epilepsy patients.

摘要

检测致痫区至关重要,尤其是对于耐药性癫痫患者。准确绘制在自发性癫痫发作期间表现出高活动的皮质区域,并检测高达 500 Hz 的神经活动,可协助临床医生做出手术决策并改善患者预后。我们设计、制造和测试了一种具有独特嵌入式结构的新型混合多尺度微脑电描记术(micro-ECoG)阵列。该阵列与市售微电极阵列(Neuronexus)进行了比较,用于记录感觉皮层体感诱发电位和匹鲁卡品诱导癫痫发作引起的啮齿动物神经活动。多尺度阵列记录的诱发电位和空间图(“micros”、“mesos”和“macros”分别指相对电极尺寸,40 微米、1 毫米和 4 毫米)与 Neuronexus 阵列相似。与较大的 mesos 和 macro 相比,通过 micros 记录的 SSEP 具有更高的峰值幅度和更大的信号功率。在多尺度上检测到癫痫发作起始事件和高频振荡(约 450 Hz),与市售阵列相似。在癫痫监测过程中,与 mesos 和 macro 相比,micros 在 5-1000 Hz 频率范围内具有更大的 SNR。在皮层刺激实验中,mesos 成功诱发了运动效应。先前的研究比较了宏观和微电极在定位相邻区域癫痫活动中的作用。这里验证的多尺度设计是第一个从同一重叠皮质区域同时测量宏观和微电极信号的设计。这使微电极记录与标准神经外科实践中使用的宏观电极记录能够直接进行比较。先前的研究还表明,产生高频振荡的皮质区域发生致痫的风险增加。这些微发作的更准确映射可能会改善癫痫患者的手术结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验