Suppr超能文献

微电生理学与皮质神经元的相位关系。

Phase relationship between micro-electrocorticography and cortical neurons.

机构信息

Biomedical Engineering, 1550 Engineering Drive, University of Wisconsin, Madison, WI, United States of America.

出版信息

J Neural Eng. 2019 Oct 30;16(6):066028. doi: 10.1088/1741-2552/ab335b.

Abstract

OBJECTIVE

Electrocorticography (ECoG) is commonly used to map epileptic foci and to implement brain-computer interfaces. Understanding the spatiotemporal correspondence between potentials recorded from the brain's surface and the firing patterns of neurons within the cortex would inform the interpretation of ECoG signals and the design of (microfabricated) micro-ECoG electrode arrays. Based on the theory that synaptic potentials generated by neurons firing in synchrony superimpose to generate local field potentials (LFPs), we hypothesized that neurons in the cortex would fire at preferential phases of the micro-ECoG signal in a spatially dependent way.

APPROACH

We custom fabricated micro-ECoG electrode arrays with a small opening for silicon arrays (NeuroNexus) to be inserted into the cortex.

MAIN RESULTS

We found that the spectral coherence between micro-ECoG signals and intracortical LFPs decreased with distance and frequency, but the coherence with spiking units did not simply decrease over distance, likely due to the structure of the cortex. The majority of sorted units spiked during a preferred phase (usually downward) and frequency (usually below 20 Hz) of the micro-ECoG signal. Their preferred frequency decreased with administration of dexmeditomidine, a sedative commonly used for cortical mapping in patients with epilepsy prior to surgical resection. Dexmedetomidine concomitantly shifted the micro-ECoG spectral density towards lower frequencies. Therefore, the phase relationship between micro-ECoG signals and cortical spiking depends on the state of the brain, and spectrum shifts towards lower frequencies in the electrocorticography signal are a signature of increased spike-phase coupling. However, spike-phase coupling is not a static property since visual stimuli were found to modulate the magnitude of phase coupling at gamma frequency ranges (30-80 Hz), providing empirical evidence that neurons transiently phase-lock.

SIGNIFICANCE

The phase relationship between intracortical spikes and micro-ECoG signals depends on brain state, site separation, cortical structure, and external stimuli.

摘要

目的

皮层电图(ECoG)常用于绘制癫痫病灶并实现脑机接口。了解脑表面记录的电位与皮层内神经元放电模式之间的时空对应关系,将有助于解释 ECoG 信号并设计(微制造的)微 ECoG 电极阵列。基于神经元同步放电产生的突触电位叠加生成局部场电位(LFPs)的理论,我们假设皮层中的神经元会以空间依赖的方式在微 ECoG 信号的优先相位处放电。

方法

我们定制了带有小开口的微 ECoG 电极阵列,用于将硅阵列(NeuroNexus)插入皮层。

主要结果

我们发现微 ECoG 信号与皮层内 LFPs 的谱相干性随距离和频率降低,但与放电单元的相干性不会简单地随距离降低,这可能是由于皮层的结构所致。大多数分类单元在微 ECoG 信号的优先相位(通常是向下)和频率(通常低于 20 Hz)下放电。它们的优先频率随右美托咪定(一种常用于癫痫患者手术切除前皮层映射的镇静剂)的给药而降低。右美托咪定同时将微 ECoG 频谱密度向较低频率转移。因此,微 ECoG 信号与皮层放电之间的相位关系取决于大脑的状态,电生理图谱中频谱向较低频率的转移是尖峰相位耦合增加的特征。然而,尖峰相位耦合不是一个静态特性,因为视觉刺激被发现可以调节伽马频率范围(30-80 Hz)的相位耦合幅度,提供了神经元瞬时相位锁定的经验证据。

意义

皮层内尖峰与微 ECoG 信号之间的相位关系取决于大脑状态、位置分离、皮层结构和外部刺激。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验