Suppr超能文献

基于身体因素的老年人肌少症预测的机器学习分类器模型。

Machine-learning classifier models for predicting sarcopenia in the elderly based on physical factors.

机构信息

Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, South Korea.

出版信息

Geriatr Gerontol Int. 2024 Jun;24(6):595-602. doi: 10.1111/ggi.14895. Epub 2024 May 14.

Abstract

AIM

As the size of the elderly population gradually increases, musculoskeletal disorders, such as sarcopenia, are increasing. Diagnostic techniques such as X-rays, computed tomography, and magnetic resonance imaging are used to predict and diagnose sarcopenia, and methods using machine learning are gradually increasing. This study aimed to create a model that can predict sarcopenia using physical characteristics and activity-related variables without medical diagnostic equipment, such as imaging equipment, for the elderly aged 60 years or older.

METHODS

A sarcopenia prediction model was constructed using public data obtained from the Korea National Health and Nutrition Examination Survey. Models were built using Logistic Regression, Support Vector Machine (SVM), XGBoost, LightGBM, RandomForest, and Multi-layer Perceptron Neural Network (MLP) algorithms, and the feature importance of the models trained with the algorithms, except for SVM and MLP, was analyzed.

RESULTS

The sarcopenia prediction model built with the LightGBM algorithm achieved the highest test accuracy, of 0.848. In constructing the LightGBM model, physical characteristic variables such as body mass index, weight, and waist circumference showed high importance, and activity-related variables were also used in constructing the model.

CONCLUSIONS

The sarcopenia prediction model, which consisted of only physical characteristics and activity-related factors, showed excellent performance. This model has the potential to assist in the early detection of sarcopenia in the elderly, especially in communities with limited access to medical resources or facilities. Geriatr Gerontol Int 2024; 24: 595-602.

摘要

目的

随着老年人口的逐渐增加,肌肉骨骼疾病(如肌少症)也在增加。X 射线、计算机断层扫描和磁共振成像等诊断技术被用于预测和诊断肌少症,并且使用机器学习的方法也在逐渐增加。本研究旨在创建一个模型,该模型可以使用身体特征和与活动相关的变量来预测 60 岁或以上老年人的肌少症,而无需使用成像设备等医疗诊断设备。

方法

使用从韩国国家健康和营养检查调查中获得的公共数据构建肌少症预测模型。使用逻辑回归、支持向量机(SVM)、XGBoost、LightGBM、随机森林和多层感知机神经网络(MLP)算法构建模型,并分析除 SVM 和 MLP 之外使用算法训练的模型的特征重要性。

结果

LightGBM 算法构建的肌少症预测模型的测试准确率最高,为 0.848。在构建 LightGBM 模型时,身体特征变量(如体重指数、体重和腰围)显示出较高的重要性,并且与活动相关的变量也用于构建模型。

结论

仅由身体特征和与活动相关的因素组成的肌少症预测模型表现出优异的性能。该模型有可能帮助早期发现老年人的肌少症,特别是在医疗资源或设施有限的社区中。

国际老年医学与老年学杂志 2024 年;24: 595-602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验