Rezvani Mohammad Ali, Ardeshiri Hadi Hassani, Gholami Alireza, Aghmasheh Masomeh, Doustgani Amir
Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 451561319, Iran.
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Sci Rep. 2024 May 14;14(1):11038. doi: 10.1038/s41598-024-61871-0.
Extensive research efforts have been dedicated to developing electrode materials with high capacity to address the increasing complexities arising from the energy crisis. Herein, a new nanocomposite was synthesized via the sol-gel method by immobilizing KZnWO within the surface of NiZnO. ZnWO@NiZnO was characterized by FT-IR, UV-Vis, XRD, SEM, EDX, BET, and TGA-DTG methods. The electrochemical characteristics of the materials were examined using cyclic voltammogram (CV) and charge-discharge chronopotentiometry (CHP) techniques. Multiple factors affecting the hydrogen storage capacity, including current density (j), surface area of the copper foam, and the consequences of repeated cycles of hydrogen adsorption-desorption were evaluated. The initial cycle led to an impressive hydrogen discharge capability of 340 mAh/g, which subsequently increased to 900 mAh/g after 20 cycles with a current density of 2 mA in 6.0 M KOH medium. The surface area and the electrocatalytic characteristics of the nanoparticles contribute to facilitate the formation of electrons and provide good diffusion channels for the movement of electrolyte ions throughout the charge-discharge procedure.
为了应对能源危机带来的日益复杂的问题,人们投入了大量的研究精力来开发具有高容量的电极材料。在此,通过溶胶 - 凝胶法将KZnWO固定在NiZnO表面合成了一种新型纳米复合材料。采用傅里叶变换红外光谱(FT - IR)、紫外 - 可见光谱(UV - Vis)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDX)、比表面积分析(BET)以及热重 - 微商热重分析(TGA - DTG)方法对ZnWO@NiZnO进行了表征。使用循环伏安法(CV)和充放电计时电位法(CHP)技术研究了材料的电化学特性。评估了影响储氢容量的多个因素,包括电流密度(j)、泡沫铜的表面积以及氢吸附 - 解吸重复循环的影响。在6.0 M KOH介质中,初始循环的氢放电容量达到了令人印象深刻的340 mAh/g,在电流密度为2 mA的情况下经过20次循环后,该值随后增加到900 mAh/g。纳米颗粒的表面积和电催化特性有助于促进电子的形成,并为电解质离子在整个充放电过程中的移动提供良好的扩散通道。