Suppr超能文献

用于增强视网膜光学相干断层扫描图像的广义三维配准算法。

Generalized 3D registration algorithm for enhancing retinal optical coherence tomography images.

机构信息

The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada.

The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada.

出版信息

J Biomed Opt. 2024 Jun;29(6):066002. doi: 10.1117/1.JBO.29.6.066002. Epub 2024 May 14.

Abstract

SIGNIFICANCE

Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol.

AIM

We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol.

APPROACH

We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM).

RESULTS

The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume.

CONCLUSIONS

The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.

摘要

意义

由于其非侵入性和体积采集能力,光学相干断层扫描(OCT)已成为诊断和监测各种眼部疾病治疗的标准方法。尽管在眼科领域得到了广泛应用,但运动伪影仍然是 OCT 成像中的一个挑战,会对图像质量产生不利影响。尽管已经开发了几种多体积配准算法来解决这个问题,但它们通常是针对特定的 OCT 系统或采集协议设计的。

目的

我们旨在使用与系统无关的配准算法生成无运动伪影的 OCT 体积,该算法独立于系统规格或协议。

方法

我们开发了一种 B 扫描配准算法,可消除运动,并校正体积之间的平移眼球运动和旋转角度差异。在从两种不同类型的定制构建的 OCT 系统和一种商业上可用的系统获得的各种数据集上进行了测试,以确定所提出算法的可靠性。此外,使用了不同的系统规格,轴向分辨率、横向分辨率、信噪比和实时运动跟踪都有所变化。通过均方误差(MSE)和多尺度结构相似性指数度量(MS-SSIM)进一步评估了该方法的准确性。

结果

结果表明,图像的整体对比度得到了改善,这使得视网膜血管系统的浅层和深层血管丛的详细可视化变得更加容易。经过多体积配准和平均化后,可以分辨内、外视网膜的更精细特征,如光感受器和其他特定于病理的特征。定量分析证实,与参考体积相比,增加平均注册体积的数量将降低 MSE 并增加 MS-SSIM。

结论

该算法获得的多体积注册数据显著改善了视网膜微血管网络以及视网膜形态特征的可视化效果。此外,我们已经验证了我们的方法的多功能性超越了特定的 OCT 模式,从而提高了 OCT 在眼部疾病诊断和监测中的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7c3/11091473/21278efed121/JBO-029-066002-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验