Suppr超能文献

基于三维卷积神经网络的头部计算机断层扫描对创伤性脑损伤病例中线移位的自动检测

Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans.

作者信息

Agrawal Deepak, Joshi Sharwari, Bahel Vaibhav, Poonamallee Latha, Agrawal Amit

机构信息

Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India.

Department of Research, InMed Prognostics Inc, Pune, Maharashtra, India.

出版信息

J Neurosci Rural Pract. 2024 Apr-Jun;15(2):293-299. doi: 10.25259/JNRP_490_2023. Epub 2024 Feb 29.

Abstract

OBJECTIVES

Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs).

MATERIALS AND METHODS

The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist's reports. The radiologist's reports were considered the "gold standard" for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans.

RESULTS

The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%.

CONCLUSION

An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

摘要

目的

中线移位(MLS)是脑外伤严重程度的关键指标,甚至可提示颅内压变化。目前,放射科医生必须采用繁琐的技术手动测量MLS。利用人工智能自动检测MLS可为急救医护人员提供前沿解决方案,有助于快速诊断和治疗。在本研究中,我们试图确定我们的筛查工具在创伤性脑损伤(TBI)患者的计算机断层扫描(CT)图像上自动检测MLS的准确性和预后价值。

材料与方法

该研究纳入了在新德里全印度医学科学研究所神经外科就诊的TBI病例。在开始研究前获得了机构伦理委员会的许可。数据收集持续了九个多月,即从2020年1月至2020年9月。数据收集包括头部CT扫描、患者人口统计学信息、临床细节以及放射科医生的报告。放射科医生的报告被视为评估MLS的“金标准”。使用176例头部CT扫描数据开发了基于深度学习的三维(3D)卷积神经网络(CNN)模型。

结果

所开发的3D CNN模型使用156例扫描数据进行训练,并在20例头部CT上进行测试,以确定模型的准确性和敏感性。该筛查工具能够正确检测出7/10例MLS病例和4/10例非MLS病例。该模型的准确率为55%,特异性较高(70%),敏感性为中等水平(40%)。

结论

用于筛查MLS的自动化解决方案对神经外科医生可能有用。这些结果有力地证明了3D CNN可在紧急情况下协助临床医生筛查MLS病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03aa/11090596/0e7b3626d661/JNRP-15-293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验