Suppr超能文献

逆合成零:使用强化学习的自我改进全局合成规划

Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning.

作者信息

Guo Jiasheng, Yu Chenning, Li Kenan, Zhang Yijian, Wang Guoqiang, Li Shuhua, Dong Hao

机构信息

Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.

School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China.

出版信息

J Chem Theory Comput. 2024 Jun 11;20(11):4921-4938. doi: 10.1021/acs.jctc.4c00071. Epub 2024 May 15.

Abstract

The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.

摘要

近年来,计算机辅助合成规划(CASP)领域取得了显著发展。然而,许多CASP程序依赖大数据集来训练神经网络,由于数据质量和化学家的先验知识,这导致了一些局限性。作为回应,我们提出了逆合成零(ReSynZ),这是一种基于反应模板的方法,它将蒙特卡罗树搜索与受AlphaGo Zero启发的强化学习相结合。与其他基于单步反应模板的CASP方法不同,ReSynZ将由反应规则确定的复杂分子的完整合成路径作为训练神经网络的输入。ReSynZ使使用相对较小反应数据集(数万条数据)训练的神经网络能够为目标分子生成多条合成路径,并建议可能的反应条件。在多个分子逆合成数据集上,与现有算法相比,ReSynZ展示了出色的预测性能。诸如自我改进模型特性、灵活的奖励设置、在化学合成路线规划中超越人类局限性的潜力等优势,使ReSynZ成为化学合成设计中的一个有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验