Zeng Kaipeng, Yang Bo, Zhao Xin, Zhang Yu, Nie Fan, Yang Xiaokang, Jin Yaohui, Xu Yanyan
MoE Key Laboratory of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, 200240, Shanghai, China.
Frontiers Science Center for Transformative Molecules (FSCTM), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, Shanghai, China.
J Cheminform. 2024 Jul 15;16(1):80. doi: 10.1186/s13321-024-00877-2.
Retrosynthesis planning poses a formidable challenge in the organic chemical industry, particularly in pharmaceuticals. Single-step retrosynthesis prediction, a crucial step in the planning process, has witnessed a surge in interest in recent years due to advancements in AI for science. Various deep learning-based methods have been proposed for this task in recent years, incorporating diverse levels of additional chemical knowledge dependency.
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction. By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules. Based on the fact that the majority of molecule structures remain unchanged during a chemical reaction, we propose a simple yet effective SMILES alignment technique to facilitate the reuse of unchanged structures for reactant generation. Extensive experiments show that our method substantially outperforms state-of-the-art template-free and semi-template-based approaches. Importantly, our template-free method achieves effectiveness comparable to, or even surpasses, established powerful template-based methods.
We present a novel graph-to-sequence template-free retrosynthesis prediction pipeline that overcomes the limitations of Transformer-based methods in molecular representation learning and insufficient utilization of chemical information. We propose an unsupervised learning mechanism for establishing product-atom correspondence with reactant SMILES tokens, achieving even better results than supervised SMILES alignment methods. Extensive experiments demonstrate that UAlign significantly outperforms state-of-the-art template-free methods and rivals or surpasses template-based approaches, with up to 5% (top-5) and 5.4% (top-10) increased accuracy over the strongest baseline.
逆合成规划在有机化学工业中,尤其是在制药领域,构成了一项艰巨的挑战。单步逆合成预测作为规划过程中的关键一步,近年来由于人工智能在科学领域的进展而受到了极大的关注。近年来,针对这项任务已经提出了各种基于深度学习的方法,这些方法纳入了不同程度的额外化学知识依赖性。
本文介绍了UAlign,一种用于逆合成预测的无模板图到序列管道。通过结合图神经网络和Transformer,我们的方法可以更有效地利用分子的固有图结构。基于大多数分子结构在化学反应过程中保持不变这一事实,我们提出了一种简单而有效的SMILES对齐技术,以促进在反应物生成中重用不变的结构。大量实验表明,我们的方法显著优于最先进的无模板和基于半模板的方法。重要的是,我们的无模板方法所达到的有效性与已确立的强大的基于模板的方法相当,甚至超越了它们。
我们提出了一种新颖的无模板图到序列逆合成预测管道,克服了基于Transformer的方法在分子表示学习中的局限性以及对化学信息利用不足的问题。我们提出了一种无监督学习机制,用于建立产物原子与反应物SMILES标记的对应关系,取得了比有监督的SMILES对齐方法更好的结果。大量实验表明,UAlign显著优于最先进的无模板方法,与基于模板的方法相媲美或超越它们,与最强基线相比,在top-5和top-10上的准确率分别提高了5%和5.4%。