Suppr超能文献

全光控忆阻器中的光诱导电导增强与抑制

Light-Induced Conductance Potentiation and Depression in an All-Optically Controlled Memristor.

作者信息

Li Xinmiao, Fang Zijing, Guo Xing, Wang Ruixiao, Zhao Yinxi, Zhu Wenhui, Wang Liancheng, Zhang Lei

机构信息

State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410000, China.

出版信息

ACS Appl Mater Interfaces. 2024 May 29;16(21):27866-27874. doi: 10.1021/acsami.4c02092. Epub 2024 May 15.

Abstract

Optoelectronic memristors are new multifunctional devices with both electrically tunable and light-tunable synaptic plasticity, attracting great attention as key promising devices for optoelectronic neuromorphic computing systems. At present, the conductance modulation in most optoelectronic memristors is conducted in a hybrid photoelectric mode, suffering some problems such as heat generation and control complexity. Here, an optoelectronic memristor based on the p-Si/n-ZnO heterojunction is proposed where the conductance can be reversibly modulated in an all-optically controlled mode. The electron detrapping/trapping mechanism at the p-Si/n-ZnO interface barrier region is presented to explain the light-induced conductance potentiation/depression behavior. Furthermore, some synaptic functions, including excitatory postsynaptic current (EPSC), inhibitory postsynaptic current (IPSC), and paired-pulse facilitation (PPF), are successfully mimicked in the p-Si/n-ZnO heterojunction memristor, instructing its application potential for optoelectronic neuromorphic computing.

摘要

光电忆阻器是具有电可调谐和光可调谐突触可塑性的新型多功能器件,作为光电神经形态计算系统的关键有前景器件备受关注。目前,大多数光电忆阻器中的电导调制是在混合光电模式下进行的,存在诸如发热和控制复杂性等问题。在此,提出了一种基于p-Si/n-ZnO异质结的光电忆阻器,其电导可以在全光控模式下进行可逆调制。提出了p-Si/n-ZnO界面势垒区的电子脱陷阱/陷阱机制来解释光诱导的电导增强/抑制行为。此外,在p-Si/n-ZnO异质结忆阻器中成功模拟了一些突触功能,包括兴奋性突触后电流(EPSC)、抑制性突触后电流(IPSC)和双脉冲易化(PPF),表明其在光电神经形态计算中的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验