Northeastern University, Shenyang, China.
China Medical University, Shenyang, China.
Med Phys. 2024 Aug;51(8):5295-5307. doi: 10.1002/mp.17128. Epub 2024 May 15.
Segmentation of the parotid glands and tumors by MR images is essential for treating parotid gland tumors. However, segmentation of the parotid glands is particularly challenging due to their variable shape and low contrast with surrounding structures.
The lack of large and well-annotated datasets limits the development of deep learning in medical images. As an unsupervised learning method, contrastive learning has seen rapid development in recent years. It can better use unlabeled images and is hopeful to improve parotid gland segmentation.
We propose Swin MoCo, a momentum contrastive learning network with Swin Transformer as its backbone. The ImageNet supervised model is used as the initial weights of Swin MoCo, thus improving the training effects on small medical image datasets.
Swin MoCo trained with transfer learning improves parotid gland segmentation to 89.78% DSC, 85.18% mIoU, 3.60 HD, and 90.08% mAcc. On the Synapse multi-organ computed tomography (CT) dataset, using Swin MoCo as the pre-trained model of Swin-Unet yields 79.66% DSC and 12.73 HD, which outperforms the best result of Swin-Unet on the Synapse dataset.
The above improvements require only 4 h of training on a single NVIDIA Tesla V100, which is computationally cheap. Swin MoCo provides new approaches to improve the performance of tasks on small datasets. The code is publicly available at https://github.com/Zian-Xu/Swin-MoCo.
通过磁共振图像对腮腺和肿瘤进行分割对于治疗腮腺肿瘤至关重要。然而,由于腮腺形状多变且与周围结构对比度低,因此腮腺的分割特别具有挑战性。
缺乏大型且标注良好的数据集限制了医学图像中深度学习的发展。作为一种无监督学习方法,对比学习近年来发展迅速。它可以更好地利用未标记的图像,并有望改善腮腺分割。
我们提出了 Swin MoCo,这是一种具有 Swin 转换器作为骨干的动量对比学习网络。使用 ImageNet 监督模型作为 Swin MoCo 的初始权重,从而提高了对小医学图像数据集的训练效果。
使用迁移学习训练的 Swin MoCo 将腮腺分割提高到 89.78% DSC、85.18% mIoU、3.60 HD 和 90.08% mAcc。在 Synapse 多器官 CT 数据集上,使用 Swin MoCo 作为 Swin-Unet 的预训练模型可获得 79.66% DSC 和 12.73 HD,优于 Synapse 数据集上 Swin-Unet 的最佳结果。
上述改进仅需在单个 NVIDIA Tesla V100 上训练 4 小时,计算成本低廉。Swin MoCo 为提高小数据集任务的性能提供了新方法。代码可在 https://github.com/Zian-Xu/Swin-MoCo 上获得。