Suppr超能文献

下一代医学成像:U-Net 进化与 Transformers 的崛起。

Next-Gen Medical Imaging: U-Net Evolution and the Rise of Transformers.

机构信息

School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.

出版信息

Sensors (Basel). 2024 Jul 18;24(14):4668. doi: 10.3390/s24144668.

Abstract

The advancement of medical imaging has profoundly impacted our understanding of the human body and various diseases. It has led to the continuous refinement of related technologies over many years. Despite these advancements, several challenges persist in the development of medical imaging, including data shortages characterized by low contrast, high noise levels, and limited image resolution. The U-Net architecture has significantly evolved to address these challenges, becoming a staple in medical imaging due to its effective performance and numerous updated versions. However, the emergence of Transformer-based models marks a new era in deep learning for medical imaging. These models and their variants promise substantial progress, necessitating a comparative analysis to comprehend recent advancements. This review begins by exploring the fundamental U-Net architecture and its variants, then examines the limitations encountered during its evolution. It then introduces the Transformer-based self-attention mechanism and investigates how modern models incorporate positional information. The review emphasizes the revolutionary potential of Transformer-based techniques, discusses their limitations, and outlines potential avenues for future research.

摘要

医学成像技术的进步深刻地影响了我们对人体和各种疾病的理解。多年来,相关技术不断得到改进。尽管取得了这些进展,但医学成像的发展仍然面临一些挑战,包括对比度低、噪声水平高和图像分辨率有限等数据不足的问题。U-Net 架构的显著发展,使其成为医学成像的主要技术之一,因为它具有有效的性能和众多更新的版本。然而,基于 Transformer 的模型的出现标志着医学成像领域深度学习的新时代。这些模型及其变体有望取得重大进展,因此需要进行比较分析来理解最新进展。本综述首先探讨了基本的 U-Net 架构及其变体,然后研究了其在发展过程中遇到的限制。接着介绍了基于 Transformer 的自注意力机制,并研究了现代模型如何融入位置信息。本综述强调了基于 Transformer 的技术的革命性潜力,讨论了它们的局限性,并概述了未来研究的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a6/11280776/97e28551fcb1/sensors-24-04668-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验