Suppr超能文献

利用机器学习预测血肿扩大:ATACH 2 试验的探索性分析。

Predicting hematoma expansion using machine learning: An exploratory analysis of the ATACH 2 trial.

机构信息

Rush University Medical Center, Department of Neurology, Chicago, IL 60612, United States of America.

Hospital of the University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States of America.

出版信息

J Neurol Sci. 2024 Jun 15;461:123048. doi: 10.1016/j.jns.2024.123048. Epub 2024 May 12.

Abstract

INTRODUCTION

Hematoma expansion (HE) in patients with intracerebral hemorrhage (ICH) is a key predictor of poor prognosis and potentially amenable to treatment. This study aimed to build a classification model to predict HE in patients with ICH using deep learning algorithms without using advanced radiological features.

METHODS

Data from the ATACH-2 trial (Antihypertensive Treatment of Acute Cerebral Hemorrhage) was utilized. Variables included in the models were chosen as per literature consensus on salient variables associated with HE. HE was defined as increase in either >33% or 6 mL in hematoma volume in the first 24 h. Multiple machine learning algorithms were employed using iterative feature selection and outcome balancing methods. 70% of patients were used for training and 30% for internal validation. We compared the ML models to a logistic regression model and calculated AUC, accuracy, sensitivity and specificity for the internal validation models respective models.

RESULTS

Among 1000 patients included in the ATACH-2 trial, 924 had the complete parameters which were included in the analytical cohort. The median [interquartile range (IQR)] initial hematoma volume was 9.93.mm [5.03-18.17] and 25.2% had HE. The best performing model across all feature selection groups and sampling cohorts was using an artificial neural network (ANN) for HE in the testing cohort with AUC 0.702 [95% CI, 0.631-0.774] with 8 hidden layer nodes The traditional logistic regression yielded AUC 0.658 [95% CI, 0.641-0.675]. All other models performed with less accuracy and lower AUC. Initial hematoma volume, time to initial CT head, and initial SBP emerged as most relevant variables across all best performing models.

CONCLUSION

We developed multiple ML algorithms to predict HE with the ANN classifying the best without advanced radiographic features, although the AUC was only modestly better than other models. A larger, more heterogenous dataset is needed to further build and better generalize the models.

摘要

介绍

脑出血(ICH)患者的血肿扩大(HE)是预后不良的关键预测因素,且可能适合治疗。本研究旨在构建一种分类模型,使用深度学习算法预测 ICH 患者的 HE,而不使用先进的影像学特征。

方法

使用 ATACH-2 试验(急性脑出血降压治疗)的数据。模型中包含的变量是根据与 HE 相关的显著变量的文献共识选择的。HE 定义为在最初 24 小时内血肿体积增加>33%或 6mL。使用迭代特征选择和结果平衡方法使用多种机器学习算法。70%的患者用于训练,30%用于内部验证。我们将 ML 模型与逻辑回归模型进行了比较,并分别计算了内部验证模型的 AUC、准确性、敏感性和特异性。

结果

在 ATACH-2 试验中纳入的 1000 名患者中,有 924 名患者具有完整的分析队列参数。初始血肿体积的中位数[四分位数范围(IQR)]为 9.93mm[5.03-18.17],25.2%有 HE。在所有特征选择组和采样队列中,表现最好的模型是在测试队列中使用人工神经网络(ANN)进行 HE,AUC 为 0.702[95%CI,0.631-0.774],具有 8 个隐藏层节点。传统的逻辑回归产生 AUC 为 0.658[95%CI,0.641-0.675]。所有其他模型的准确性和 AUC 都较低。在所有表现最好的模型中,初始血肿体积、首次 CT 头部时间和初始 SBP 是最重要的相关变量。

结论

我们开发了多种 ML 算法来预测 HE,ANN 没有使用先进的放射学特征,分类效果最好,尽管 AUC 仅略优于其他模型。需要更大、更多样化的数据集来进一步构建和更好地推广模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验