Suppr超能文献

单细胞组学中的深度生成模型。

Deep generative models in single-cell omics.

作者信息

Rivero-Garcia Inés, Torres Miguel, Sánchez-Cabo Fátima

机构信息

Universidad Politécnica de Madrid, Madrid, 28040, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.

出版信息

Comput Biol Med. 2024 Jun;176:108561. doi: 10.1016/j.compbiomed.2024.108561. Epub 2024 May 6.

Abstract

Deep Generative Models (DGMs) are becoming instrumental for inferring probability distributions inherent to complex processes, such as most questions in biomedical research. For many years, there was a lack of mathematical methods that would allow this inference in the scarce data scenario of biomedical research. The advent of single-cell omics has finally made square the so-called "skinny matrix", allowing to apply mathematical methods already extensively used in other areas. Moreover, it is now possible to integrate data at different molecular levels in thousands or even millions of samples, thanks to the number of single-cell atlases being collaboratively generated. Additionally, DGMs have proven useful in other frequent tasks in single-cell analysis pipelines, from dimensionality reduction, cell type annotation to RNA velocity inference. In spite of its promise, DGMs need to be used with caution in biomedical research, paying special attention to its use to answer the right questions and the definition of appropriate error metrics and validation check points that confirm not only its correct use but also its relevance. All in all, DGMs provide an exciting tool that opens a bright future for the integrative analysis of single-cell -omics to understand health and disease.

摘要

深度生成模型(DGM)对于推断复杂过程中固有的概率分布正变得至关重要,比如生物医学研究中的大多数问题。多年来,在生物医学研究数据稀缺的情况下,一直缺乏能够进行这种推断的数学方法。单细胞组学的出现终于使所谓的“瘦矩阵”变得合理,从而能够应用在其他领域已广泛使用的数学方法。此外,由于正在合作生成的单细胞图谱数量众多,现在有可能在数千甚至数百万个样本中整合不同分子水平的数据。此外,DGM在单细胞分析流程中的其他常见任务中也已证明是有用的,从降维、细胞类型注释到RNA速度推断。尽管有前景,但在生物医学研究中使用DGM时需要谨慎,特别要注意用其回答正确的问题以及定义合适的误差度量和验证检查点,这些不仅要确认其正确使用,还要确认其相关性。总而言之,DGM提供了一个令人兴奋的工具,为单细胞组学的综合分析以理解健康和疾病开启了光明的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验