Du Dongxue, Jung Taehwan, Manzo Sebastian, LaDuca Zachary, Zheng Xiaoqi, Su Katherine, Saraswat Vivek, McChesney Jessica, Arnold Michael S, Kawasaki Jason Ken
Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, United States of America.
Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois60439, United States of America.
Nano Lett. 2022 Nov 9;22(21):8647-8653. doi: 10.1021/acs.nanolett.2c03187. Epub 2022 Oct 7.
Remote epitaxy is promising for the synthesis of lattice-mismatched materials, exfoliation of membranes, and reuse of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. Alternative mechanisms such as pinhole-seeded epitaxy or van der Waals epitaxy can often explain the resulting films. Here, we show that growth of the Heusler compound GdPtSb on clean graphene/sapphire produces a 30° rotated (R30) superstructure that cannot be explained by pinhole epitaxy. With decreasing temperature, the fraction of this R30 domain increases, compared to the direct epitaxial R0 domain, which can be explained by a competition between remote versus pinhole epitaxy. Careful graphene/substrate annealing and consideration of the relative lattice mismatches are required to obtain epitaxy to the underlying substrate across a series of other Heusler films, including LaPtSb and GdAuGe. The R30 superstructure provides a possible experimental fingerprint of remote epitaxy, since it is inconsistent with the leading alternative mechanisms.
远程外延在晶格失配材料的合成、薄膜的剥离以及昂贵衬底的再利用方面具有广阔前景。然而,远程机制的明确实验证据仍然难以捉摸。诸如针孔籽晶外延或范德华外延等替代机制往往能够解释所得到的薄膜。在此,我们表明在清洁的石墨烯/蓝宝石上生长赫斯勒化合物GdPtSb会产生一个30°旋转(R30)的超结构,这无法用针孔外延来解释。随着温度降低,与直接外延的R0畴相比,这个R30畴的比例增加,这可以通过远程外延与针孔外延之间的竞争来解释。要在包括LaPtSb和GdAuGe在内的一系列其他赫斯勒薄膜上实现与底层衬底的外延,需要仔细进行石墨烯/衬底退火并考虑相对晶格失配情况。R30超结构提供了远程外延的一个可能的实验特征,因为它与主要的替代机制不一致。