Suppr超能文献

通过在深度学习中纳入地球物理信息来加强全球细颗粒物浓度估计

Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical Information in Deep Learning.

作者信息

Shen Siyuan, Li Chi, van Donkelaar Aaron, Jacobs Nathan, Wang Chenguang, Martin Randall V

机构信息

Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

出版信息

ACS EST Air. 2024 Mar 27;1(5):332-345. doi: 10.1021/acsestair.3c00054. eCollection 2024 May 10.

Abstract

Global fine particulate matter (PM) assessment is impeded by a paucity of monitors. We improve estimation of the global distribution of PM concentrations by developing, optimizing, and applying a convolutional neural network with information from satellite-, simulation-, and monitor-based sources to predict the local bias in monthly geophysical PM concentrations over 1998-2019. We develop a loss function that incorporates geophysical estimates and apply it in model training to address the unrealistic results produced by mean-square-error loss functions in regions with few monitors. We introduce novel spatial cross-validation for air quality to examine the importance of considering spatial properties. We address the sharp decline in deep learning model performance in regions distant from monitors by incorporating the geophysical PM. The resultant monthly PM estimates are highly consistent with spatial cross-validation PM concentrations from monitors globally and regionally. We withheld 10% to 99% of monitors for testing to evaluate the sensitivity and robustness of model performance to the density of ground-based monitors. The model incorporating the geophysical PM concentrations remains highly consistent with observations globally even under extreme conditions (e.g., 1% for training, = 0.73), while the model without exhibits weaker performance (1% for training, = 0.51).

摘要

全球细颗粒物(PM)评估因监测器数量不足而受阻。我们通过开发、优化并应用一个卷积神经网络,结合来自卫星、模拟和监测器的数据来源信息,来预测1998 - 2019年每月地球物理PM浓度的局部偏差,从而改进对PM浓度全球分布的估计。我们开发了一种纳入地球物理估计值的损失函数,并将其应用于模型训练,以解决在监测器较少的地区由均方误差损失函数产生的不切实际结果。我们引入了用于空气质量的新型空间交叉验证,以检验考虑空间特性的重要性。通过纳入地球物理PM,我们解决了远离监测器地区深度学习模型性能的急剧下降问题。由此得到的每月PM估计值与全球和区域监测器的空间交叉验证PM浓度高度一致。我们保留10%至99%的监测器用于测试,以评估模型性能对地面监测器密度的敏感性和稳健性。即使在极端条件下(例如,1%用于训练,= 0.73),纳入地球物理PM浓度的模型在全球范围内仍与观测结果高度一致,而未纳入的模型表现较弱(1%用于训练,= 0.51)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8785/11092969/3a739ed2c920/ea3c00054_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验