Siniscalchi Marco, Gibson Joshua S, Tufnail James, Swallow Jack E N, Lewis Jarrod, Matthews Guillaume, Karagoz Burcu, van Spronsen Matthijs A, Held Georg, Weatherup Robert S, Grovenor Chris R M, Speller Susannah C
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
The Faraday Institution, Didcot OX11 0RA, U.K.
ACS Appl Mater Interfaces. 2024 May 29;16(21):27230-27241. doi: 10.1021/acsami.4c00444. Epub 2024 May 16.
The reactivity of LiLaZrTaO (LLZTO) solid electrolytes to form lithio-phobic species such as LiCO on their surface when exposed to trace amounts of HO and CO limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like HO and CO conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions. We find that annealing LLZTO at 600 °C in this atmosphere effectively removes the surface contaminants, but a significant level of contamination reappears upon cooling down. In contrast, HCl acid etching demonstrates superior LiCO removal and stable surface chemistry post treatment. To avoid air exposure during the acid treatment, an anhydrous HCl solution in diethyl ether was used directly within the glovebox. This novel acid etching strategy delivers the lowest lithium/LLZTO interfacial resistance and the highest critical current density.
当暴露于痕量的HO和CO时,LiLaZrTaO(LLZTO)固体电解质会发生反应,在其表面形成诸如LiCO之类的疏锂物种,这限制了基于LLZTO的固态电池的发展。各种处理方法,如在手套箱内对LLZTO进行退火或酸蚀刻,旨在去除表面污染物,但目前缺乏对这些处理过程中及处理后LLZTO表面化学演变的全面理解。在此,在近常压X射线光电子能谱室中重现了类似手套箱的HO和CO条件,以在实际条件下分析LLZTO表面。我们发现,在这种气氛中于600℃对LLZTO进行退火可有效去除表面污染物,但冷却后会再次出现大量污染物。相比之下,HCl酸蚀刻显示出卓越的LiCO去除效果以及处理后稳定的表面化学性质。为避免酸处理过程中暴露于空气中,在手套箱内直接使用了无水HCl的乙醚溶液。这种新颖的酸蚀刻策略实现了最低的锂/LLZTO界面电阻和最高的临界电流密度。