1 School of Psychological Science, University of Bristol , 12a Priory Road, Bristol BS8 1TU , UK.
2 School of Biological Sciences, University of Bristol , Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , UK.
J R Soc Interface. 2019 May 31;16(154):20190183. doi: 10.1098/rsif.2019.0183. Epub 2019 May 29.
Avoiding detection can provide significant survival advantages for prey, predators, or the military; conversely, maximizing visibility would be useful for signalling. One simple determinant of detectability is an animal's colour relative to its environment. But identifying the optimal colour to minimize (or maximize) detectability in a given natural environment is complex, partly because of the nature of the perceptual space. Here for the first time, using image processing techniques to embed targets into realistic environments together with psychophysics to estimate detectability and deep neural networks to interpolate between sampled colours, we propose a method to identify the optimal colour that either minimizes or maximizes visibility. We apply our approach in two natural environments (temperate forest and semi-arid desert) and show how a comparatively small number of samples can be used to predict robustly the most and least effective colours for camouflage. To illustrate how our approach can be generalized to other non-human visual systems, we also identify the optimum colours for concealment and visibility when viewed by simulated red-green colour-blind dichromats, typical for non-human mammals. Contrasting the results from these visual systems sheds light on why some predators seem, at least to humans, to have colouring that would appear detrimental to ambush hunting. We found that for simulated dichromatic observers, colour strongly affected detection time for both environments. In contrast, trichromatic observers were more effective at breaking camouflage.
避免被发现可以为猎物、捕食者或军队提供显著的生存优势;相反,最大限度地提高可见度对于信号传递将是有用的。一个动物的颜色与其环境之间的相对关系是决定其可检测性的一个简单因素。但是,要确定在给定的自然环境中最小化(或最大化)可检测性的最佳颜色是复杂的,部分原因是感知空间的性质。在这里,我们首次使用图像处理技术将目标嵌入到逼真的环境中,结合心理物理学来估计可检测性,并使用深度神经网络在采样颜色之间进行插值,提出了一种方法来确定最小化或最大化可见度的最佳颜色。我们在两个自然环境(温带森林和半干旱沙漠)中应用了我们的方法,并展示了如何使用相对较少的样本数量来稳健地预测最有效的和最无效的伪装颜色。为了说明我们的方法如何可以推广到其他非人类视觉系统,我们还确定了模拟红绿色盲二色性者(非人类哺乳动物的典型代表)观察时的隐藏和可见的最佳颜色。对比这些视觉系统的结果,可以揭示为什么有些捕食者在人类看来似乎具有对伏击狩猎不利的颜色。我们发现,对于模拟二色性观察者,颜色对两个环境的检测时间都有强烈的影响。相比之下,三色性观察者更善于打破伪装。