Suppr超能文献

进化的数字孪生导向的复杂网络系统,由节点特征和特征偏好的变化驱动。

Evolutionary Digital Twin-Oriented Complex Networked Systems driven by node features and the mutation of feature preferences.

机构信息

Complex Adaptive Systems, Data Science Institute, University of Technology Sydney, Sydney, NSW, Australia.

出版信息

PLoS One. 2024 May 16;19(5):e0303571. doi: 10.1371/journal.pone.0303571. eCollection 2024.

Abstract

Accurate modelling of complex social systems, where people interact with each other and those interactions change over time, has been a research challenge for many years. This study proposes an evolutionary Digital Twin-Oriented Complex Networked System (DT-CNS) framework that considers heterogeneous node features and changeable connection preferences. We create heterogeneous preference mutation mechanisms to characterise nodes' adaptive decisions on preference mutation in response to interaction patterns and epidemic risks. In this space, we use nodes' interaction utilities to characterise the positive feedback from interactions and negative impact of epidemic risks. We also introduce social capital constraint to harness the density of social connections better. The nodes' heterogeneous preference mutation styles include the (i)inactive style that keeps initial social preferences, (ii) ignorant style that randomly mutates preferences, (iii) egocentric style that optimises individual interaction utility, (iv) cooperative style that optimises the total interaction utilities by group decisions and (v) collaborative style that further allows the cooperative nodes to transfer social capital. Our simulation experiments on evolutionary DT-CNSs reveal that heterogeneous preference mutation styles lead to various interaction and infection patterns. The results also show that (i) increasing social capital enables higher interactions but higher infection risks and uncertainty in decision-making; (ii) group decisions outperform individual decisions by eliminating the unawareness of the decisions of other nodes; (iii) the collaborative nodes under a strict social capital limit can promote interactions, reduce infection risks and achieve higher overall interaction utilities.

摘要

准确建模复杂的社会系统,其中人们相互作用,并且这些相互作用随时间变化,多年来一直是研究挑战。本研究提出了一种进化的数字孪生导向复杂网络系统(DT-CNS)框架,该框架考虑了异构节点特征和可变的连接偏好。我们创建了异构偏好突变机制,以描述节点在响应交互模式和流行风险时对偏好突变的自适应决策。在这个空间中,我们使用节点的交互效用来描述交互的正反馈和流行风险的负面影响。我们还引入了社会资本约束,以更好地利用社会联系的密度。节点的异构偏好突变风格包括(i)保持初始社会偏好的不活跃风格,(ii)随机突变偏好的无知风格,(iii)优化个人交互效用的自我中心风格,(iv)通过群体决策优化总交互效用的合作风格,以及(v)允许合作节点进一步转移社会资本的协作风格。我们对进化的 DT-CNS 进行的模拟实验表明,异构偏好突变风格会导致各种交互和感染模式。结果还表明,(i)增加社会资本可以提高交互,但会增加感染风险和决策的不确定性;(ii)通过消除对其他节点决策的无知,群体决策优于个人决策;(iii)在严格的社会资本限制下,协作节点可以促进交互、降低感染风险并实现更高的整体交互效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a29/11098356/d34cefce2adf/pone.0303571.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验