Complex Adaptive Systems, Data Science Institute, University of Technology Sydney, Sydney, NSW, Australia.
PLoS One. 2024 Jan 2;19(1):e0296426. doi: 10.1371/journal.pone.0296426. eCollection 2024.
This study proposes an extendable modelling framework for Digital Twin-Oriented Complex Networked Systems (DT-CNSs) with a goal of generating networks that faithfully represent real-world social networked systems. Modelling process focuses on (i) features of nodes and (ii) interaction rules for creating connections that are built based on individual node's preferences. We conduct experiments on simulation-based DT-CNSs that incorporate various features and rules about network growth and different transmissibilities related to an epidemic spread on these networks. We present a case study on disaster resilience of social networks given an epidemic outbreak by investigating the infection occurrence within specific time and social distance. The experimental results show how different levels of the structural and dynamics complexities, concerned with feature diversity and flexibility of interaction rules respectively, influence network growth and epidemic spread. The analysis revealed that, to achieve maximum disaster resilience, mitigation policies should be targeted at nodes with preferred features as they have higher infection risks and should be the focus of the epidemic control.
本研究提出了一种可扩展的面向数字孪生的复杂网络系统(DT-CNS)建模框架,旨在生成能够真实反映现实世界社交网络系统的网络。建模过程侧重于(i)节点的特征和(ii)创建连接的交互规则,这些连接是基于个体节点的偏好构建的。我们在基于模拟的 DT-CNS 上进行了实验,这些系统包含了有关网络增长的各种特征和规则,以及与这些网络上的传染病传播相关的不同传染性。我们通过研究特定时间和社交距离内的感染发生情况,针对传染病爆发对社交网络的弹性进行了案例研究。实验结果表明,与节点特征多样性和交互规则灵活性相关的不同结构和动态复杂性水平如何影响网络增长和传染病传播。分析表明,为了实现最大的弹性,缓解策略应该针对具有偏好特征的节点,因为它们具有更高的感染风险,应该是传染病控制的重点。