Li Xinpeng, Li Menghao, Liu Yue, Jie Yulin, Li Wanxia, Chen Yawei, Huang Fanyang, Zhang Yuchen, Sohail Tahir Muhammad, Wang Shiyang, Zhu Xingbao, Cheng Tao, Gu M Danny, Jiao Shuhong, Cao Ruiguo
Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315000, PR China.
J Am Chem Soc. 2024 Jun 26;146(25):17023-17031. doi: 10.1021/jacs.3c14667. Epub 2024 May 16.
The development of low-temperature lithium metal batteries (LMBs) encounters significant challenges because of severe dendritic lithium growth during the charging/discharging processes. To date, the precise origin of lithium dendrite formation still remains elusive due to the intricate interplay between the highly reactive lithium metal anode and organic electrolytes. Herein, we unveil the critical role of interfacial defluorination kinetics of localized high-concentration electrolytes (LHCEs) in regulating lithium dendrite formation, thereby determining the performance of low-temperature LMBs. We investigate the impact of solvation structures of LHCEs on low-temperature LMBs by employing tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF) as comparative solvents. The combination of comprehensive characterizations and theoretical simulations reveals that the THF-based LHCE featured with a strong solvation strength exhibits fast interfacial defluorination reaction kinetics, thus leading to the formation of an amorphous and inorganic-rich solid-electrolyte interphase (SEI) that can effectively suppress the growth of lithium dendrites. As a result, the highly reversible Li metal anode achieves an exceptional Coulombic efficiency (CE) of up to ∼99.63% at a low temperature of -30 °C, thereby enabling stable cycling of low-temperature LMB full cells. These findings underscore the crucial role of electrolyte interfacial reaction kinetics in shaping SEI formation and provide valuable insights into the fundamental understanding of electrolyte chemistry in LMBs.
低温锂金属电池(LMBs)的发展面临重大挑战,因为在充电/放电过程中会出现严重的锂枝晶生长。迄今为止,由于高活性锂金属阳极与有机电解质之间复杂的相互作用,锂枝晶形成的确切起源仍然难以捉摸。在此,我们揭示了局部高浓度电解质(LHCEs)的界面脱氟动力学在调节锂枝晶形成中的关键作用,从而决定了低温LMBs的性能。我们通过使用四氢呋喃(THF)和2-甲基四氢呋喃(2-MeTHF)作为对比溶剂,研究了LHCEs的溶剂化结构对低温LMBs的影响。综合表征和理论模拟相结合表明,具有强溶剂化强度的基于THF的LHCE表现出快速的界面脱氟反应动力学,从而导致形成一种非晶态且富含无机物的固体电解质界面(SEI),能够有效抑制锂枝晶的生长。结果,高度可逆的锂金属阳极在-30°C的低温下实现了高达约99.63%的优异库仑效率(CE),从而使低温LMB全电池能够稳定循环。这些发现强调了电解质界面反应动力学在形成SEI中的关键作用,并为深入理解LMBs中的电解质化学提供了有价值的见解。