Fan Zhenyu, Zhang Jingwei, Wu Lanqing, Yu Huaqing, Li Jia, Li Kun, Zhao Qing
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University Tianjin 300071 China
Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China.
Chem Sci. 2024 Sep 20;15(41):17161-72. doi: 10.1039/d4sc05464d.
The solvation structures of Li in electrolytes play prominent roles in determining the fast-charging capabilities of lithium-ion batteries (LIBs), which are in urgent demand for smart electronic devices and electric vehicles. Nevertheless, a comprehensive understanding of how solvation structures affect ion transport through the electrolyte bulk and interfacial charge transfer reactions remains elusive. We report that the charge transfer reaction involving the desolvation process is the rate-determining step of the fast charging when ion conductivity reaches a certain value as determined by investigating electrolytes with eight conventional solvents (linear/cyclic carbonate/ether). The physicochemical characteristics of solvent molecules can result in strong ion-ion, moderate ion-dipole, strong ion-dipole, and weak ion-dipole/ion-ion interactions, respectively, in which the speed of the charge transfer reaction follows the above order of interactions. Among all solvents, dioxolane (DOL) is found to enable strong ion-ion interactions in electrolytes and thus exhibits exceptional fast-charging performance and it can still retain 60% of the initial capacity at 20C (1C = 170 mA g) with a polarization of merely 0.35 V. Further experimental characterization and theoretical calculation reveal that the aggregates in DOL electrolytes contribute to hopping assisted ion transport and facilitate the desolvation process of Li. Our results deepen the fundamental understanding of the behavior of Li solvation and provide an effective guiding principle for electrolyte design for fast-charging batteries.
电解质中锂的溶剂化结构在决定锂离子电池(LIBs)的快速充电能力方面起着重要作用,而快速充电能力是智能电子设备和电动汽车迫切需要的。然而,对于溶剂化结构如何影响离子在电解质本体中的传输以及界面电荷转移反应,仍缺乏全面的了解。我们报告称,通过研究含有八种传统溶剂(线性/环状碳酸酯/醚)的电解质发现,当离子电导率达到一定值时,涉及去溶剂化过程的电荷转移反应是快速充电的速率决定步骤。溶剂分子的物理化学特性可分别导致强离子-离子、中等离子-偶极、强离子-偶极和弱离子-偶极/离子-离子相互作用,其中电荷转移反应的速度遵循上述相互作用顺序。在所有溶剂中,发现二氧戊环(DOL)能在电解质中形成强离子-离子相互作用,因此表现出卓越的快速充电性能,在20℃(1C = 170 mA g)下仍能保持60%的初始容量,极化仅为0.35 V。进一步的实验表征和理论计算表明,DOL电解质中的聚集体有助于跳跃辅助离子传输并促进锂的去溶剂化过程。我们的结果加深了对锂溶剂化行为的基本理解,并为快速充电电池的电解质设计提供了有效的指导原则。