Suppr超能文献

稳健的遗传密码增强了蛋白质的可进化性。

Robust genetic codes enhance protein evolvability.

机构信息

Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.

Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

PLoS Biol. 2024 May 16;22(5):e3002594. doi: 10.1371/journal.pbio.3002594. eCollection 2024 May.

Abstract

The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.

摘要

标准遗传密码定义了地球上几乎所有生命形式的翻译规则。它还决定了通过单核苷酸突变可获得的氨基酸变化,从而影响蛋白质的可进化性——突变产生蛋白质功能适应性变化的能力。标准遗传密码最显著的特征之一是其对突变的稳健性,但突变的稳健性是否促进或阻碍蛋白质的可进化性仍是一个悬而未决的问题。为了回答这个问题,我们使用来自大规模平行序列到功能测定的数据,在数十万种重排遗传密码中构建和分析了 6 个经验适应性景观,包括与蛋白质工程和合成生物学相关的密码子压缩方案的遗传密码。我们发现,稳健的遗传密码通过生成具有很少峰值的平滑适应性景观来提高蛋白质的可进化性,这些峰值很容易从整个序列空间中获得。然而,标准遗传密码在这方面很少是例外,因为许多替代密码生成的景观比标准代码更平滑。通过构建这些景观的低维可视化,每个景观都包含超过 1600 万个 mRNA 序列,我们表明这些替代密码从根本上改变了高适应性基因型网络的拓扑特征。虽然优化可进化性的遗传密码在某种程度上取决于氨基酸序列和蛋白质功能之间的详细关系,但我们还发现了用于增强和减弱可进化性的非标准遗传密码工程的一般设计原则,这可能分别有助于定向蛋白质进化实验和合成生物的生物控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4da/11098591/3de8df13ffad/pbio.3002594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验