Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA.
Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA.
J Insect Physiol. 2024 Jun;155:104648. doi: 10.1016/j.jinsphys.2024.104648. Epub 2024 May 14.
Despite the generally negative impact of urbanization on insect biodiversity, some insect species persist in urban habitats. Understanding the mechanisms underpinning the ability of insects to tolerate urban habitats is critical given the contribution of land-use change to the global insect decline. Compensatory mechanisms such as phenotypic plasticity and evolutionary change in thermal physiological traits could allow urban populations to persist under the altered thermal regimes of urban habitats. It is important to understand the contributions of plasticity and evolution to trait change along urbanization gradients as the two mechanisms operate under different constraints and timescales. Here, we examine the plastic and evolutionary responses of heat and cold tolerance (critical thermal maximum [CT] and critical thermal minimum [CT]) to warming among populations of the cabbage white butterfly, Pieris rapae, from urban and non-urban (rural) habitats using a two-temperature common garden experiment. Although we expected populations experiencing urban warming to exhibit greater CT and diminished CT through plastic and evolutionary mechanisms, our study revealed evidence only for plasticity in the expected direction of both thermal tolerance traits. We found no evidence of evolutionary divergence in either heat or cold tolerance, despite each trait showing evolutionary potential. Our results suggest that thermal tolerance plasticity contributes to urban persistence in this system. However, as the magnitude of the plastic response was low and comparable to other insect species, other compensatory mechanisms likely further underpin this species' success in urban habitats.
尽管城市化对昆虫生物多样性通常具有负面影响,但一些昆虫物种仍在城市栖息地中生存。考虑到土地利用变化对全球昆虫减少的贡献,理解昆虫耐受城市栖息地的能力的机制至关重要。表型可塑性和热生理特征的进化变化等补偿机制可以使城市种群在城市栖息地改变的热环境下得以生存。了解可塑性和进化对沿城市化梯度的特征变化的贡献很重要,因为这两种机制在不同的约束和时间尺度下发挥作用。在这里,我们使用两种温度的共同花园实验,检查了来自城市和非城市(农村)栖息地的菜粉蝶(Pieris rapae)种群对高温和低温耐受性(临界热最大值[CT]和临界热最小值[CT])的可塑性和进化响应,这种蝴蝶受到城市变暖的影响。尽管我们预计经历城市变暖的种群将通过可塑性和进化机制表现出更高的 CT 和降低的 CT,但我们的研究仅发现了两个热耐受特征都朝着预期的方向表现出可塑性的证据。尽管每个特征都具有进化潜力,但我们没有发现耐热性或耐寒性的进化分歧的证据。我们的研究结果表明,在这个系统中,热耐受可塑性有助于城市的持续存在。然而,由于塑性反应的幅度较低,与其他昆虫物种相当,因此其他补偿机制可能进一步支撑该物种在城市栖息地的成功。