Gao Jingjing, Qian Maomin, Wang Zhengning, Li Yanling, Luo Na, Xie Sangma, Shi Weiyang, Li Peng, Chen Jun, Chen Yunchun, Wang Huaning, Liu Wenming, Li Zhigang, Yang Yongfeng, Guo Hua, Wan Ping, Lv Luxian, Lu Lin, Yan Jun, Song Yuqing, Wang Huiling, Zhang Hongxing, Wu Huawang, Ning Yuping, Du Yuhui, Cheng Yuqi, Xu Jian, Xu Xiufeng, Zhang Dai, Jiang Tianzai
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
Schizophr Bull. 2024 Dec 20;51(1):217-235. doi: 10.1093/schbul/sbae069.
Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification.
Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions.
Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research.
Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
精神分裂症(SZ)是一种普遍存在的精神障碍,带来了沉重的健康负担。由于临床主观性,诊断准确性仍然具有挑战性。为了解决这个问题,我们探索将磁共振成像(MRI)作为一种增强SZ诊断的工具,并提供客观参考和生物标志物。通过使用带有图卷积的深度学习,我们将MRI数据表示为与脑结构对齐的图,改进特征提取和分类。多种模态的整合有望提高分类效果。
我们的研究从7家医院招募了683名SZ患者和606名健康对照,收集了结构MRI和功能MRI数据。这两种数据类型都表示为图,由2个图注意力网络进行处理,并融合用于分类。带有图卷积的Grad-CAM确保了可解释性,偏最小二乘法分析了脑区的基因表达。
我们的方法在分类任务中表现出色,在10折交叉验证中达到了83.32%的准确率、83.41%的灵敏度和83.20%的特异性,超过了传统方法。并且我们的多模态方法优于单模态方法。Grad-CAM识别出了与基因分析和先前研究一致的潜在脑生物标志物。
我们的研究证明了带有图注意力网络的深度学习的有效性,超过了先前的SZ诊断方法。多模态MRI相对于单模态MRI的优越性证实了我们最初的假设。识别潜在的脑生物标志物和基因生物标志物有望推动SZ的客观诊断和研究。