Suppr超能文献

基于CEEMDAN-AdaBoost-BiLSTM-LSTM模型的恒河溶解氧多步预测

Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model.

作者信息

Pant Neha, Toshniwal Durga, Gurjar Bhola Ram

机构信息

Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.

Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.

出版信息

Sci Rep. 2024 May 16;14(1):11199. doi: 10.1038/s41598-024-61910-w.

Abstract

Accurate prediction of Dissolved Oxygen (DO) is an integral part of water resource management. This study proposes a novel approach combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) with AdaBoost and deep learning for multi-step forecasting of DO. CEEMDAN generates Intrinsic Mode Functions (IMFs) with different frequencies, capturing non-linear and non-stationary characteristics of the data. The high-frequency and medium-frequency IMFs, characterized by complex patterns and frequent changes over time, are predicted using Adaboost with Bidirectional Long Short-Term Memory (BiLSTM) as the base estimator. The low-frequency IMFs, characterized by relatively simple patterns, are predicted using standalone Long Short-Term Memory (LSTM). The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is tested on data from ten stations of river Ganga. We compare the results with six models without decomposition and four models utilizing decomposition. Experimental results show that using a tailored prediction technique based on each IMF's distinctive features leads to more accurate forecasts. CEEMDAN-AdaBoost-BiLSTM-LSTM outperforms CEEMDAN-BiLSTM with an average improvement of 25.458% for RMSE and 37.390% for MAE. Compared with CEEMDAN-AdaBoost-BiLSTM, an average improvement of 20.779% for RMSE and 28.921% for MAE is observed. Diebold-Mariano test and t-test suggest a statistically significant difference in performance between the proposed and compared models.

摘要

准确预测溶解氧(DO)是水资源管理的一个重要组成部分。本研究提出了一种将完全集成经验模态分解与自适应噪声(CEEMDAN)、AdaBoost和深度学习相结合的新方法,用于溶解氧的多步预测。CEEMDAN生成具有不同频率的本征模态函数(IMF),捕捉数据的非线性和非平稳特征。高频和中频IMF具有复杂的模式且随时间频繁变化,使用以双向长短期记忆(BiLSTM)为基本估计器的AdaBoost进行预测。低频IMF具有相对简单的模式,使用独立的长短期记忆(LSTM)进行预测。所提出的CEEMDAN-AdaBoost-BiLSTM-LSTM模型在恒河十个站点的数据上进行了测试。我们将结果与六个无分解模型和四个使用分解的模型进行了比较。实验结果表明,基于每个IMF的独特特征使用定制的预测技术可得到更准确的预测。CEEMDAN-AdaBoost-BiLSTM-LSTM的表现优于CEEMDAN-BiLSTM,均方根误差(RMSE)平均提高了25.458%,平均绝对误差(MAE)提高了37.390%。与CEEMDAN-AdaBoost-BiLSTM相比,RMSE平均提高了20.779%,MAE平均提高了28.921%。迪博尔德-马里亚诺检验和t检验表明,所提出的模型与比较模型在性能上存在统计学上的显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验