Suppr超能文献

使用分解优化算法-机器学习方法预测矿井涌水量

Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach.

作者信息

Bian Jiaxin, Hou Tao, Ren Dengjun, Lin Chengsen, Qiao Xiaoying, Ma Xiongde, Ma Ji, Wang Yue, Wang Jingyu, Liang Xiaowei

机构信息

School of Water and Environment, Chang'an University, Xi'an, 710064, China.

Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.

出版信息

Sci Rep. 2024 Aug 1;14(1):17777. doi: 10.1038/s41598-024-67962-2.

Abstract

Disasters caused by mine water inflows significantly threaten the safety of coal mining operations. Deep mining complicates the acquisition of hydrogeological parameters, the mechanics of water inrush, and the prediction of sudden changes in mine water inflow. Traditional models and singular machine learning approaches often fail to accurately forecast abrupt shifts in mine water inflows. This study introduces a novel coupled decomposition-optimization-deep learning model that integrates Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Northern Goshawk Optimization (NGO), and Long Short-Term Memory (LSTM) networks. We evaluate three types of mine water inflow forecasting methods: a singular time series prediction model, a decomposition-prediction coupled model, and a decomposition-optimization-prediction coupled model, assessing their ability to capture sudden changes in data trends and their prediction accuracy. Results show that the singular prediction model is optimal with a sliding input step of 3 and a maximum of 400 epochs. Compared to the CEEMDAN-LSTM model, the CEEMDAN-NGO-LSTM model demonstrates superior performance in predicting local extreme shifts in mine water inflow volumes. Specifically, the CEEMDAN-NGO-LSTM model achieves scores of 96.578 in MAE, 1.471% in MAPE, 122.143 in RMSE, and 0.958 in NSE, representing average performance improvements of 44.950% and 19.400% over the LSTM model and CEEMDAN-LSTM model, respectively. Additionally, this model provides the most accurate predictions of mine water inflow volumes over the next five days. Therefore, the decomposition-optimization-prediction coupled model presents a novel technical solution for the safety monitoring of smart mines, offering significant theoretical and practical value for ensuring safe mining operations.

摘要

矿井突水灾害严重威胁煤矿开采作业安全。深部开采使水文地质参数获取、突水机理及矿井涌水量突变预测变得复杂。传统模型和单一机器学习方法往往无法准确预测矿井涌水量的突变。本研究引入一种新型的分解-优化-深度学习耦合模型,该模型将自适应噪声完备总体经验模态分解(CEEMDAN)、苍鹰优化算法(NGO)和长短期记忆(LSTM)网络相结合。我们评估了三种矿井涌水量预测方法:单一时间序列预测模型、分解-预测耦合模型和分解-优化-预测耦合模型,评估它们捕捉数据趋势突变的能力及其预测准确性。结果表明,单一预测模型在滑动输入步长为3且最大轮次为400时最优。与CEEMDAN-LSTM模型相比,CEEMDAN-NGO-LSTM模型在预测矿井涌水量局部极值变化方面表现更优。具体而言,CEEMDAN-NGO-LSTM模型的平均绝对误差(MAE)得分为96.578,平均绝对百分比误差(MAPE)为1.471%,均方根误差(RMSE)为122.143,纳什效率系数(NSE)为0.958,分别比LSTM模型和CEEMDAN-LSTM模型的平均性能提高了44.950%和19.400%。此外,该模型对未来五天的矿井涌水量预测最为准确。因此,分解-优化-预测耦合模型为智能矿山安全监测提供了一种新的技术方案,对确保安全开采作业具有重要的理论和实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d255/11294609/ae5a3e9548c8/41598_2024_67962_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验