Fei Zhaoyu, Ma Yu-Han
Department of Physics and Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China.
Phys Rev E. 2024 Apr;109(4-1):044101. doi: 10.1103/PhysRevE.109.044101.
Temperature is a fundamental concept in thermodynamics. In macroscopic thermodynamics, systems possess their own intrinsic temperature which equals the reservoir temperature when they equilibrate. In stochastic thermodynamics for simple systems at the microscopic level, thermodynamic quantities other than temperature (a deterministic parameter of the reservoir) are stochastic. To bridge the disparity in the perspectives about temperature between the micro- and macroregimes, we assign a generic mesoscopic N-body system an intrinsic fluctuating temperature T in this work. We simplify the complicated dynamics of numerous particles to one stochastic differential equation with respect to T, where the noise term accounts for finite-size effects arising from random energy transfer between the system and the reservoir. Our analysis reveals that these fluctuations make the extensive quantities (in the thermodynamic limit) deviate from being extensive. Moreover, we derive finite-size corrections, characterized by heat capacity of the system, to the Jarzynski equality. A possible violation of the principle of maximum work that scales with N^{-1} is also discussed. Additionally, we examine the impact of temperature fluctuations in a finite-size Carnot engine. We show that irreversible entropy production resulting from the temperature fluctuations of the working substance diminishes the average efficiency of the cycle as η_{C}-〈η〉∼N^{-1}, highlighting the unattainability of the Carnot efficiency η_{C} for mesoscopic heat engines even under the quasistatic limit. Our general framework paves the way for further exploration of nonequilibrium thermodynamics and the corresponding finite-size effects in a mesoscopic regime.
温度是热力学中的一个基本概念。在宏观热力学中,系统拥有自身的固有温度,当它们达到平衡时,该温度等于热源温度。在微观层面简单系统的随机热力学中,除温度(热源的一个确定性参数)之外的热力学量都是随机的。为了弥合微观和宏观领域在温度观点上的差异,在这项工作中,我们为一个一般的介观N体系统赋予一个固有涨落温度T。我们将众多粒子的复杂动力学简化为一个关于T的随机微分方程,其中噪声项考虑了系统与热源之间随机能量转移产生的有限尺寸效应。我们的分析表明,这些涨落使得广延量(在热力学极限下)偏离广延性。此外,我们推导了以系统热容量为特征的对Jarzynski等式的有限尺寸修正。还讨论了一个可能违反与N⁻¹成比例的最大功原理的情况。另外,我们研究了有限尺寸卡诺热机中温度涨落的影响。我们表明,工作物质温度涨落导致的不可逆熵产生会使循环的平均效率降低,即η_C - 〈η〉∼N⁻¹,这突出了即使在准静态极限下,介观热机也无法达到卡诺效率η_C。我们的一般框架为进一步探索介观领域的非平衡热力学及相应的有限尺寸效应铺平了道路。