Suppr超能文献

基于氧化应激相关基因的铂耐药卵巢癌患者预后风险模型的建立

Development of a Prognostic Risk Model Based on Oxidative Stress-related Genes for Platinum-resistant Ovarian Cancer Patients.

作者信息

Su Huishan, Hou Yaxin, Zhu Difan, Pang Rongqing, Tian Shiyun, Ding Ran, Chen Ying, Zhang Sihe

机构信息

Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.

Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China.

出版信息

Recent Pat Anticancer Drug Discov. 2025;20(1):89-101. doi: 10.2174/0115748928311077240424065832.

Abstract

INTRODUCTION

Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum- resistant OC patients.

METHODS

Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments.

RESULTS

Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells.

CONCLUSION

The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.

摘要

引言

卵巢癌(OC)是一种异质性恶性肿瘤,预后较差。氧化应激在耐药性的发展中起着关键作用。然而,氧化应激相关基因(OSRGs)与铂耐药性OC预后之间的关系仍不清楚。本研究旨在为铂耐药性OC患者建立基于OSRGs的预后风险模型。

方法

进行基因集富集分析(GSEA)以确定铂耐药性和敏感性OC患者之间OSRGs的表达差异。使用Cox回归分析来识别预后OSRGs并建立风险评分模型。该模型通过使用外部数据集进行验证。使用机器学习来确定与铂耐药性相关的预后OSRGs。最后,通过体外细胞实验确定所选OSRG的生物学功能。

结果

富集了三个与氧化应激相关途径相关的基因集(p < 0.05),并且发现105个OSRGs在铂耐药性和敏感性OC之间存在差异表达(p < 0.05)。鉴定出20个与预后相关的OSRGs(HR:0.562 - 5.437;95% CI:0.319 - 20.148;p < 0.005),并使用七个独立的OSRGs构建预后风险评分模型,该模型准确预测了OC患者的生存情况(1年、3年和5年AUC分别为0.69、0.75和0.67)。该模型的预后潜力在验证队列中得到证实。机器学习显示五个预后OSRGs(SPHK1、PXDNL、C1QA、WRN和SETX)与OC患者的铂耐药性密切相关。细胞实验表明WRN显著促进了OC细胞的恶性程度和铂耐药性。

结论

基于OSRGs的风险评分模型可以有效预测OC患者的预后和铂耐药性。该模型可能改善临床中OC患者的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验