Wang Juan, Feng Ningning, Zhang Shuang, Lin Yang, Zhang Yapeng, Du Jing, Tian Senlin, Zhao Qun, Yang Gang
Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Suzhou Key Laboratory of Functional Ceramic Materials Department, Changshu Institute of Technology, Suzhou, 215500, P. R. China.
Adv Sci (Weinh). 2024 Jul;11(28):e2402892. doi: 10.1002/advs.202402892. Epub 2024 May 17.
Rechargeable Li-CO batteries are considered as a promising carbon-neutral energy storage technology owing to their ultra-high energy density and efficient CO capture capability. However, the sluggish CO reduction/evolution kinetics impedes their practical application, which leads to huge overpotentials and poor cyclability. Multi-element transit metal oxides (TMOs) are demonstrated as effective cathodic catalysts for Li-CO batteries. But there are no reports on the integration of defect engineering on multi-element TMOs. Herein, the oxygen vacancy-bearing Li-Ni-Co-Mn multi-oxide (Re-NCM-H3) catalyst with the α-NaFeO-type structure is first fabricated by annealing the NiCoMn precursor that derived from spent ternary LiNiCoMnO cathode, in H at 300 °C. As demonstrated by experimental results and theory calculations, the introduction of moderate oxygen vacancy has optimized electronic state near the Fermi level (E), eventually improving CO adsorption and charge transfer. Therefore, the Li-CO batteries with Re-NCM-H3 catalyst deliver a high capacity (11808.9 mAh g), a lower overpotential (1.54 V), as well as excellent stability over 216 cycles at 100 mA g and 165 cycles at 400 mA g. This study not only opens up a sustainable application of spent ternary cathode, but also validates the potential of multi-element TMO catalysts with oxygen defects for high-efficiency Li-CO batteries.
可充电锂-二氧化碳电池因其超高的能量密度和高效的二氧化碳捕获能力而被视为一种很有前景的碳中性能源存储技术。然而,缓慢的二氧化碳还原/析出动力学阻碍了它们的实际应用,导致巨大的过电位和较差的循环稳定性。多元素过渡金属氧化物(TMOs)被证明是锂-二氧化碳电池有效的阴极催化剂。但关于在多元素TMOs上进行缺陷工程整合的报道还没有。在此,通过在300℃的氢气中对源自废弃三元LiNiCoMnO阴极的NiCoMn前驱体进行退火,首次制备了具有α-NaFeO型结构的含氧空位的Li-Ni-Co-Mn多氧化物(Re-NCM-H3)催化剂。实验结果和理论计算表明,适度氧空位的引入优化了费米能级(E)附近的电子态,最终改善了二氧化碳吸附和电荷转移。因此,具有Re-NCM-H3催化剂的锂-二氧化碳电池具有高容量(11808.9 mAh g)、较低的过电位(1.54 V),以及在100 mA g下216次循环和400 mA g下165次循环的优异稳定性。这项研究不仅开辟了废弃三元阴极的可持续应用,也验证了具有氧缺陷的多元素TMO催化剂在高效锂-二氧化碳电池中的潜力。